## Chapter E 900

## TABLES AND EXAMPLES

## A. TABLES

Tables 1, 2 and 3 apply only to complete conduit systems, and do not apply to short sections of conduit used for the protection of exposed wiring from physical damage.

TAABLE 1
MAXIMUM NUMBER OF CONDUCTORS IN TRADE SHZES
OF CONDUIT OR TUBING
Derating factors for more than three conductors in raceways, see tables E 310.12 through E 310.15 , Note 8
Types RF-2, RFH-2, R, RH, RW, RH-RW, RHW, RHH, RU, RUH,
Types TW, T, TW, and THW
(See sections E 300.17 , 玉 300.18 , E 346.06 and E 348.06 )

| Size | Maximum Number of Conductors in Conduit or Tubing (Based upon \% conductor fill, Table 3, Chapter E-900, for new work) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { AWG or } \\ & \text { MCM } \end{aligned}$ | $\begin{aligned} & 1 / 2 \\ & \text { Inch } \end{aligned}$ | $\begin{gathered} 3 / 4 \\ \text { Inch } \end{gathered}$ | $\begin{gathered} 1 \\ \text { Inch } \end{gathered}$ | $\begin{aligned} & 11 / 4 \\ & \text { Inch } \end{aligned}$ | 112 <br> Inch | $\begin{gathered} 2 \\ \text { Inch } \end{gathered}$ | $212$ <br> Inch | $\begin{gathered} 3 \\ \text { Inch } \end{gathered}$ | $\begin{aligned} & 31 / 2 \\ & \text { Inch } \end{aligned}$ | $\begin{gathered} 4 \\ \text { Inch } \end{gathered}$ | $\begin{gathered} 5 \\ \text { Inch } \end{gathered}$ | $\stackrel{6}{\text { Inch }}$ |
| 18 | 7 | 12 | 20 | 35 | 49 | 80 | 115 | 176 |  |  |  |  |
| 16 | 6 | 10 | 17 | 30 | 41 | 68 | 98 | 150 |  |  |  |  |
| 14 | 4 | 6 | 10 | 18 | 25 | 41 | 58 | 90 | 121 | 155 |  |  |
| 12 | 8 | 5 | 8 | 15 | 21 | 34 | 50 | 76 | 103 | 132 | 208 |  |
| 10 | 1 | 4 | 7 | 13 | 17 | 29 | 41 | 64 | 86 | 110 | 173 |  |
| 8 | 1 | 3 | 4 | 7 | 10 | 17 | 25 | 38 | 62 | 67 | 105 | 152 |
| 6 | 1 | 1. | 8 | 4 | 6 | 10 | 15 | 23 | 32 | 41 | 64 | 93 |
| 4 | 1 | 1 | 1 | 3* | 5 | 8 | 12 | 18 | 24 | 31 | 49 | 72 |
| 3 |  | 1 | 1 | 3 | 4 | 7 | 10 | 16 | 21 | 28 | 44 | 63 |
| 2 |  | 1 | 1 | 3 | 3 | 6 | 9 | 14 | 19 | 24 | 38 | 55 |
| 1 |  | 1 | 1 | 1 | 3 | 4 | 7 | 10 | 14 | 18 | 29 | 42 |
| 0 |  |  | 1. | 1 | 2 | 4 | 6 | 9 | 12 | 16 | 25 | 37 |
| 00 |  |  | 1 | 1 | 1 | 3 | 5 | 8 | 11 | 14 | 22 | 32 |
| 000 |  |  | 1 | 1 | 1 | 3 | 4 | 7 | 9 | 12 | 19 | 27 |
| 0000 |  |  |  | 1 | 1 | 2 | 3 | 6 | 8 | 10 | 16 | 23 |
| 250 |  |  |  | 1 | 1 | 1 | 8 | 5 | 6 | 8 | 13 | 19 |
| 300 |  |  |  | 1 | 1 | 1 | 3 | 4 | 5 | 7 | 11 | 16 |
| 350 |  |  |  | 1 | 1 | 1 | 1 | 8 | 5 | 6 | 10 | 15 |
| 400 |  |  |  |  | 1 | 1 | 1 | 3 | 4 | 6 | 9 | 13 |
| 500 |  |  |  |  | 1 | 1 | 1 | 3 | 4 | 5 | 8 | 11 |
| 600 |  |  |  |  |  | 1 | 1 | 1 | 3 | 4 | 6 | 9 |
| 700 |  |  |  |  |  | 1 | 1 | 1 | 3 | 3 | 6 | 8 |
| 750 |  |  |  |  |  | 1 | 1 | 1 | 3 | 8 | 5 | 8 |
| 800 |  |  |  |  |  | 1 | 1 | 1 | 2 | 3 | 5 | 7 |
| 900 |  |  |  |  |  | 1 | 1 | 1 | 1 | 3 | 4 | 7 |
| 1000 |  |  |  |  |  | 1 | 1 | 1 | 1 | 8 | 4 |  |
| 1250 |  |  |  |  |  |  | 1 | 1 | 1 | 1 | 8 | 5 |
| 1500 |  |  |  |  |  |  |  | 1 | 1 | 1 | 8 | 4 |
| 1750 |  |  |  |  |  |  |  | 1 | 1 | 1 | 2 | 4 |
| 2000 |  |  |  |  |  |  |  | 1 | 1 | 1 | 1 | 3 |

*Where an existing service run of conduit or electrical metallic tubing does not exceed 50 ft . in length and does not contain more than the equivalent of two quarterbends from end to end, two No. 4 insulated and one No, 4 bare conductors may be installed in 1 -inch conduit or tubing.

TABLE 2
IHADE SIKES OF CONDUER OR TUUBING FOR NUMEER OF CONDUCTORS
Lead-Covered Types RL and RHL-600 V. (See sections E 346.06 and E 348.06 )

| SizeAWGMCM | Number of Conductors in One Conduit or Tubing |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Single Conductor Cable |  |  |  | 2-Conduetor Cable |  |  |  | 3-Conductor Cable |  |  |  |
|  | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 14 | $1 / 2$ | 3.4 | $3 / 4$ | 1 | $3 / 4$ | 1 | 1 | 11/4 | 3/4 | 11/4 | 11/2 | 11/2 |
| 12 | $1 / 2$ | 34 | 84 | 1 |  | 1 | 11/4 | $11 / 4$ | $1{ }^{4}$ | $11 / 4$ | 11/2 | .$^{2}$ |
| 10 | $1 / 2$ | $3 / 4$ | 1 | 1 | $3 / 4$ | 144 | 11/4 | $11 / 2$ | 1 | $11 / 2$ | 2 | 2 |
| 8 | $1 / 2$ | $1{ }^{3}$ | 11/4 | $11 / 2$ | $1^{4}$ | $11 / 4$ | 113 | 2 | 1 |  | 2 | 21/2 |
| 6 | $3 / 4$ | 11/4 | 11/2 | 112 | 114 | 11/2 | 2 | 21/2 | 11/4 | 21/2 | 3 | 3 |
| 4 | 38 | 114 | $11 / 2$ | $11 / 2$ | 114 | 2 | 21/2 | $21 / 2$ | $11 / 2$ | 3 | 3 | 31/2 |
| 8 | $3 / 4$ | $11 / 4$ | 1122 | 2 | 114 | 2 | $21 / 2$ | 3 | 11/2 | 3 | 3 | 31/2 |
| 2 | 1 | 11/4 | 11/2 | 2 | $11 / 4$ | 2 | 21.2 | 3 | $11 / 2$ | 3 | 31/2 | 4 |
| 1 | 1 | 11/2 | 2 | 2 | 11/2 | 21/2 | 3 | 31/2 | 2 | 81/2 | $4{ }^{4}$ | 5 |
| 0 | 1 | 2 | 2 | 21/2 | 2 | 21/2 | 3 | 31/2 | 2 | 4 | 5 | 5 |
| 00 | 1 | 2 | 2 | $21 / 2$ | 2 | 3 | 31/2 | 4 | 216 | 4 | 5 | 5 |
| 000 | $11 / 4$ | 2 | 212 | $21 / 2$ | 2 | 8 | 316 | 4 | $21 / 2$ | 5 | 5 | 6 |
| 0000 | $11 / 4$ | 21/2 | $21 / 2$ | 3 | 21/2 | 3 | 31/2 | 5 | 3 | 5 | 6 | 6 |
| 250 | 11/4 | 212 | 3 | 3 |  |  |  |  | 3 | 6 | 6 | --.-- |
| 300 | 113 | 8 | 3 | $31 / 2$ |  |  |  |  | $31 / 2$ | 6 | 6 | .-..- |
| 350 | 112 | 3 | 3 | $31 / 2$ |  |  |  |  | 31.2 | 6 | 6 | ~.. |
| 400 | 112 | 3 | 3 | $31 / 2$ |  |  |  |  | $31 / 2$ | 6 | 6 | --.-- |
| 500 | $11 / 2$ | 3 | 31/2 | 4 |  |  |  |  | 4 | 6 |  |  |
| 600 | 2 | 31/2 | 4 | 5 |  |  |  |  |  |  |  |  |
| 700 | 2 | 4 | 4 | 5 |  |  |  |  |  |  |  |  |
| 750 | 2 | 4 | 4 | 5 |  |  |  |  |  |  |  |  |
| 800 | 2 | 4 | 5 | 5 |  |  |  |  |  |  |  |  |
| 900 | 212 | 4 | 5 | 5 |  |  |  |  |  |  |  |  |
| 1000 | 21/2 | 5 | 5 | 6 |  |  |  |  |  |  |  |  |
| 1250 | $3{ }^{1}$ | 5 | 5 | 6 |  |  |  |  |  |  |  |  |
| 1500 | 3 | 5 | 6 | 6 |  |  |  |  |  |  |  |  |
| 1750 |  | 6 | 6 |  |  |  |  |  |  |  |  |  |
| 2000 | 31/2 | 6 | 6 |  |  |  |  |  |  |  |  |  |

The above sizes apply to stralght runs or with nominal offsets equivalent to not more than 2 quarter-bends.

See section E. 846.10 for bends in conduit.

## TABLE 3

## COMBINATION OF CONDUCTORS

(See sections E 346.06 and E 348.06 )
For groups or combination of conductors not included in table 1 chapter $\pm 900$, it is recommended that the conduit or tubins be of such size that the sum of the cross-sectional areas of the individual con ductors will not be more than the percentage of the interior crosssectional area of the conduit or tubing shown in the following table:

PER CENT AREA OF CONDUIT OR IUBING

|  |
| :--- | :---: | :---: | :---: | :---: | :---: |

Note 1. See note to table 5 for size of conduit or tubing for combinations of conductors not shown in table 1.
Note 2. For carrying capacity of more than 3 conductors in a conduit or tubing, see tables E 310.12 through E 310.15 , note 8 ,
Note 8 . See tables 4 through 7, chapter E 900 , for dimensions of conductors, conduit and tubing.
${ }^{*}$ Note 4. Use actual dimensions of wire or cable unless it is smaller *Note 4. Use actual dimensions of wire or cable unless it is smalle
than dimension of RW. Use dimension of RW as minimum dimension.
**Note 5. For rewiring, flgure dimension of wire or cable actually used.
Note 6. For exposed runs of service conduit or tubing not over 30 feet in length, the size of conduit or tubing may be determined as permitted for rewiring.
Note 7. For multi-conductor cables use actual cable cross-section areas. Conductor numbers at head of columns shall be taken as numbers of cables.
Note 8. For bare wires, use actual area from table 8.
Tables 4 through 7. Chapter E 900. Tables 4 through 7 give the nominal size of conductors and conduit or tubing recommended for use in computing size of conduit or tubing for various combinations of conductors. The dimensions represent average conditions only, and while variations will be found in dimensions of conductors and conduit of different manufacture, these variations will not affect the computation.

| TABLE 4 <br> dimensions and per cent area of conduit and of tubing <br> Areas of conduit or tubing for the combinations of wires permitted in table 3, chapter E 900 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Trade } \\ \text { Size } \end{gathered}$ | Internal Diameter Inches | $\begin{aligned} & \text { Total } \\ & 100 \% \end{aligned}$ | Area-Square Inches |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | Not Lead | Covered |  |  |  | ead Covered |  |  |  | Rewriring | ered |
|  |  |  | $1 \underset{53 \%}{\text { Cond. }}$ | $\begin{array}{\|c\|} \hline 2 \text { Cond. } \\ 31 \% \end{array}$ | $\begin{aligned} & 3 \text { Cond. } \\ & 43 \% \end{aligned}$ | $\begin{array}{\|c} 4 \text { Cond. } \\ \text { and Over } \\ 40 \% \end{array}$ | $\begin{aligned} & 1 \text { Cond. } \\ & 55 \% \end{aligned}$ | $\begin{aligned} & 2 \text { Cond. } \\ & 30 \% \\ & \hline \end{aligned}$ | $\begin{aligned} & 3 \text { Cond. } \\ & 40 \% \end{aligned}$ | $\begin{aligned} & 4 \text { Cond. } \\ & 38 \% \end{aligned}$ | $\begin{aligned} & \text { Over } 4 \\ & \text { Cond. } \\ & 35 \% \end{aligned}$ | $1 \text { Cond. }$ | $\begin{aligned} & 2 \text { Cond. } \\ & 40 \% \end{aligned}$ | $\begin{aligned} & 3 \text { Cond. } \\ & \text { and Over } \\ & 50 \% \end{aligned}$ |
| $\begin{gathered} 1 / 2 \\ 3 / 4 \\ 1 \\ 11 / 4 \\ 11 / 2 \end{gathered}$ | $\begin{array}{r} .622 \\ .824 \\ 1.049 \\ 1.380 \\ 1.610 \\ \hline \end{array}$ | $\begin{array}{r}.30 \\ .53 \\ .86 \\ 1.80 \\ 2.04 \\ \hline\end{array}$ | .16 .28 .46 .80 .808 | .09 .16 .27 .47 .63 | .13 <br> .23 <br> .37 <br> .65 <br> .88 <br> 1 | .12 .81 .34 .60 .82 | $\begin{array}{r}\text { - } 17 \\ .49 \\ .47 \\ \hline 1.12 \\ \hline\end{array}$ | .09 .16 .26 .45 .61 | .12 <br> .81 <br> .34 <br> .60 <br> .82 <br> 1 | .11 .20 .33 .57 .78 | .11 .19 .30 .53 .71 | $\begin{array}{r} .18 \\ .32 \\ .52 \\ .90 \\ 1.22 \\ \hline \end{array}$ | $\begin{array}{r} .12 \\ .31 \\ .34 \\ .60 \\ .82 \\ \hline \end{array}$ | .15 .27 .43 .75 1.02 |
| $\begin{aligned} & 2 \\ & 21 / 2 \\ & 31 / 2 \\ & 31 / 2 \end{aligned}$ | 2.067 <br> 2.469 <br> 3.068 <br> 3.548 | 3.36 <br> 4.79 <br> 7.78 <br> 9.90 | 1.781.74 <br> 2.54 <br> 3.91 <br> 5.25${ }^{\text {a }}$ ( | 1.04 1.48 2. 29 3.07 3 | 1.44 <br> 2.06 <br> 3.17 <br> 4.26 | 1.34 <br> 1.92 <br> 1.95 <br> 3.95 <br> 3.96 | 1.85 <br> 2 <br> 4.63 <br> 5.06 <br> 5.44 | 1.01 1.44 2.21 2.97 2 | 1.34 <br> 1.92 <br> 2.95 <br> 2.95 <br> 3.96 | 1.28 <br> 1.82 <br> 2.80 <br> 3.76 | 1.18 <br> 1 <br> 1.68 <br> 2.58 <br> 3.47 | 2.02 <br> 3.87 <br> 4.43 <br> 5.94 | 1.34 <br> 1.92 <br> 2.92 <br> 3.96 | 1.68 <br> 2.40 <br> 3.69 <br> 4.95 |
| 4 5 6 | 4.026 5.047 6.065 | 12.72 20.00 28.89 | 6.74 10.60 15.31 | 3.94 6.20 8.96 | 5.47 8.60 12.42 | 5.09 8.00 11.56 | 7.00 <br> 11.00 <br> 15.89 | 3.82 6.00 8.67 | 5.09 8800 11.56 | 4.83 7.60 10.98 | 4.45 7.00 10.11 | 7.63 12.00 17.33 | 5.09 8.00 11.56 | 6.36 10.00 14.45 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

dimensions and per cent ared of conduit and of tubing
in table 3, chanter E 900

TABLE 5
DLMIENSIONS OF RUBBRR-COVERED AND THERMOPLASTMCCOVERED CONDUCTORS

| $\begin{aligned} & \text { Size } \\ & \text { AWG } \\ & \mathrm{MCM} \end{aligned}$ | Types RF-2, RFH-2, R, RH, RHH, RHW, RH-RW, RW, THW |  | Types TF, T, TW, RU**, RUH**, RUW |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Approx. Diam. Inches | Approx. Area Sq. Ins. | Approx. Diam. Inches | Approx, Area Sq. Ins. |
| 18 | . 146 | . 0167 | . 106 | . 0088 |
| 16 | . 158 | . 0196 | . 118 | . 0109 |
| 14 | 2/64 in, . 171 | . 0230 | .131 | . 0135 |
| 14 | 3/64 in. .204* | .0827* |  |  |
| 12 | $2 / 64 \mathrm{in}$. .188 | . 0278 | . 148 | . 0172 |
| 12 | 3/64 in. .221* | .0384* |  |  |
| 10 | . 242 | . 0460 | . 168 | . 0224 |
| 8 | . 311 | . 0760 | . 228 | . 0408 |
| 6 | . 397 | . 1238 | . 328 | . 0819 |
| 4 | . 452 | . 1605 | . 372 | . 1087 |
| 3 | . 481 | . 1817 | . 401 | . 1263 |
| 2 | . 513 | . 2067 | . 433 | . 1478 |
| 1 | . 588 | . 2715 | . 508 | . 2027 |
| 0 | . 629 | . 3107 | . 549 | . 2367 |
| 00 | . 675 | . 3578 | . 595 | . 2781 |
| 000 | . 727 | . 4151 | . 647 | . 3288 |
| 0000 | . 785 | . 4840 | . 705 | . 3904 |
| 250 | . 868 | . 6917 | . 788 | . 4877 |
| 800 | . 938 | . 6837 | . 848 | . 5581 |
| 350 | . 985 | . 7620 | . 895 | . 6291 |
| 400 | 1.032 | . 8385 | . 942 | . 6969 |
| 500 | 1.119 | . 9834 | 1.029 | . 8316 |
| 600 | 1.283 | 1.1940 | 1.143 | 1.0261 |
| 700 | 1.304 | 1.3355 | 1.214 | 1.1575 |
| 750 | 1.839 | 1.4082 | 1.249 | 1.2252 |
| 800 | 1.372 | 1.4784 | 1.282 | 1.2908 |
| 900 | 1.435 | 1.6173 | 1.345 | 1.4208 |
| 1000 | 1.494 | 1.7531 | 1.404 | 1.5482 |
| 1250 | 1.676 | 2.2062 | 1.577 | 1.9532 |
| 1500 | 1.801 | 2.5475 | 1.702 | 2.2748 |
| 1750 | 1.916 | 2.8895 | 1.817 | 2.5930 |
| 2000 | 2.021 | 8.2079 | 1.922 | 2.9013 |

[^0]TABLE 6
DIMENSIONS OF LEAD-COVERED CONDUCTORS Types RL, RHL, and RUL

| $\begin{aligned} & \text { Size } \\ & \text { AWG } \\ & \text { MCM } \end{aligned}$ | Single Conductor |  | Two Conductor |  | Three Conductor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diam. <br> Inches | Area Sq. Ins. | Diam, Inches | $\begin{gathered} \text { Area } \\ \text { Sq. Ins. } \end{gathered}$ | Diam. Inches | Area Sq. Ins. |
| 14 | . 28 | . 062 | . $28 \times .47$ | . 115 | . 59 | . 273 |
| 12 | . 29 | . 066 | . $31 \times .54$ | . 146 | . 62 | . 301 |
| 10 | . 35 | . 096 | . $35 \times .59$ | . 180 | . 68 | . 363 |
| 8 | . 41 | . 182 | . $41 \times .71$ | . 255 | . 82 | . 528 |
| 6 | . 49 | . 188 | . $49 \times .86$ | . 369 | . 97 | . 738 |
|  |  |  | . $54 \times .96$ | . 457 | 1.08 | . 916 |
| 2 | . 60 | . 288 | . $61 \times 1.08$ | . 578 | 1.21 | 1.146 |
| 1 | . 67 | . 352 | . $70 \times 1.23$ | . 756 | 1.38 | 1.49 |
| ${ }^{0}$ | . 71 | . 396 | . $74 \times 1.32$ | . 859 | 1.47 | 1.70 |
| 00 | . 76 | . 454 | . $79 \times 1.41$ | . 980 | 1.57 | 1.94 |
| 000 | . 81 | . 515 | . $84 \times 1.52$ | 1.123 | 1.69 | 2.24 |
| 0000 | . 87 | . 593 | . $90 \times 1.64$ | 1.302 | 1.85 | 2.68 |
| 250 | . 98 | . 754 |  |  | 2.02 | 3.20 |
| 300 | 1.04 | . 85 |  |  | 2.15 | 3.62 |
| 350 | 1.10 | . 95 |  |  | 2.26 | 4.02 |
| 400 500 | 1.14 1.23 | 1.02 1.18 |  |  | 2.40 | 4.52 |
| 500 | 1.23 | 1.18 |  |  | 2.59 | 5.28 |

Note: No, 14 to No. 8, solid conductors: No. 6 and larger, stranded conductors. Data for $2 / 64$-inch insulation not yet compiled.

TABLE 7
DIMENSIONS OF ASBESTOS-VARNISHED-CAMERIC
INSULATED CONDUCTORS
Types AVA, AVB, and AVL

| SizeAWGMCM | Type AVA |  | Type AVB |  | Type AVL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Approx. <br> Diam. <br> Inches | Approx. Area Sq. In. | Approx. <br> Diam. <br> Inches | Approx. Area Sq. In. | Approx. <br> Diam. <br> Inches | Approx. Area Sq. In. |
| 14 | . 245 | . 047 | . 205 | . 033 | . 320 | . 080 |
| 12 | . 265 | . 055 | . 225 | . 040 | . 340 | . 091 |
| 10 | . 285 | . 064 | . 245 | . 047 | . 360 | . 102 |
|  |  |  |  |  |  |  |
| 6 | . 395 | . 122 | . 345 | . 094 | . 430 | . 145 |
| 4 | . 445 | . 155 | . 395 | . 123 | . 480 | . 181 |
| 2 | . 505 | . 200 | . 460 | . 166 | . 570 | . 255 |
| 1 | . 585 | . 268 | . 540 | . 229 | . 620 | . 300 |
| 0 | . 625 | . 307 | . 580 | . 264 | . 660 | . 341 |
| 00 | . 670 | . 353 | . 625 | . 307 | . 705 | . 390 |
| 000 0000 | .720 .780 | .406 .478 | . 6785 | . 358 | . 8515 | . 624 |
| 250 | . 885 | . 616 | . 855 | . 572 | . 955 | . 715 |
| 300 | . 940 | . 692 | . 910 | . 649 | 1.010 | . 800 |
| 350 | . 995 | . 778 | . 965 | . 781 | 1.060 | . 885 |
| 400 | 1.040 | . 850 | 1.010 | . 800 | 1.105 | . 960 |
| 500 | 1.125 | . 995 | 1.095 | . 945 | 1.190 | 1.118 |
| 550 | 1.165 | 1.065 | 1.135 | 1.01 | 1.265 | 1.26 |
| 600 | 1.205 | 1.140 | 1.175 | 1.09 | 1.305 | 1.34 |
| 650 | 1.240 | 1.21 | 1.210 | 1.15 | 1.340 | 1.41 |
| 700 | 1.275 | 1.28 | 1.245 | 1.22 | 1.375 | 1.49 |
| 750 | 1.310 | 1.35 | 1.280 | 1.29 | 1.410 | 1.57 |
| 800 | 1.345 | 1.42 | 1.315 | 1.36 | 1.440 | 1.68 |
| 850 | 1.875 | 1.49 | 1.345 | 1.43 | 1.470 | 1.70 |
| 900 | 1.405 | 1.55 | 1.375 | 1.49 | 1.505 | 1.78 |
| 950 | 1.485 | 1.62 | 1.405 | 1.55 | 1.585 | 1.85 |
| 1000 | 1.465 | 1.69 | 1.435 | 1.62 | 1.565 | 1.93 |

Note: No. 14 to No. 8, solid, No. 6 and larger, stranded; except AVL where all sizes are stranded.
Electrical Code, Volume 2
Register, November, 1961, No, 71

## VARNISHED-CAMBRIC INSULATED CONDUCFORS

## Type V

The insulation thickness for varnished-cambric conductors, type $V$ is the same as for rubber-covered conductors, type $R$, except for Nos. 14 and 12 which have $3 / 64$-inch insulation for varnished-cambric and 2/64-inch insulation for rubber-covered conductors and for No. 8 which has $3 / 64$-inch insulation for varnished-cambric, and 4/64-inch insulation for rubber-covered conductors. See table $E 310.02$ (2). Tables 1 and 2 may, therefore, be used for the number of varmishedcambric insulated conductors in a conduit or tubing.

TABLE 8
PROPERTIES OF CONDUCTORS

*Area given is that of a circle having a diameter equal to the overall diameter of a stranded conductor.
The values given in the table are those given in Circular 31 of the National Bureau of Standards except that those shown in the 8th column are those given in Specification B33 of the American Society for Testing Materials
The resistance values given in the last three columns are applicable only to direct current. When conductors larger than No. $4 / 0$ are used with alternating current the multiplying factors in table 9, chapter $\mathbf{E} 900$ should be used to compensate for skin effect.

MABLE 0
MUKTIPLYENG FACTORS ROR CONVERTLNG D. C. RASISTANOE
TO 60 CYCLE A. C. RESISTANCE

| Size | Multiplying Factor |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | For Non-metallic Sheathed Cables in Air or Non-metallic Conduit |  | For Metallic Sheathed Cables or All Cables in Metallic Raceways |  |
|  | Copper | Aluminum | Copper | Aluminum |
| Up to 3 AWG | 1. | 1. | 1. | 1. |
| ${ }_{1}^{2}$ | 1. | 1. | 1.01 | 1.00 |
| 1 | ${ }_{1}^{1.001}$ | 1.000 | 1.01 | 1.00 1.00 |
| 00 | 1.001 | 1.001 | 1.03 | 1.00 |
| 000 | 1.002 | 1.001 | 1.04 | 1.01 |
| ${ }_{250000}^{000} \mathrm{CM}$ | 1.004 | 1.002 | 1.05 1.06 | 1.01 1.02 |
| 300000 CM | 1.006 | 1.003 | 1.07 | 1.02 |
| 350000 CM | 1.009 | 1.004 | 1.08 | 1.03 |
| 400000 CM | 1.011 | 1.005 | 1.10 | 1.04 |
| 500000 CM | 1.018 | 1.007 | 1.18 | 1.06 |
| 600000 CM 700000 CM | 1.025 | 1.010 | 1.16 1.19 | 1.08 |
| 700000 CM 750000 CM | 1.034 1.039 | 1.013 | 1.19 1.21 | 1.11 |
| 800000 CM | 1.044 | 1.017 | 1.22 | 1.14 |
| 1000000 CM | 1.067 | 1.026 | 1.30 | 1.19 |
| 1250000 CM | 1.102 | 1.040 | 1.41 | 1.27 |
| 1500000 CM | 1.142 | 1.058 | 1.53 | 1.36 |
| 1750000 CM 2000000 CM | 1.185 1.238 | 1.079 1.100 | 1.67 1.82 | 1.46 1.56 |
| 2000000 CM |  | 1.100 | 1.82 | 1.56 |

## B. EXAMPLES

Selection of Conductors. In the following examples, the size of conductor has been selected on the basis of the allowable current-carrying capacities tabulated in the second column of table E 310.12. If other types of insulated conductors are used, or if the conductors are run open, or with more than three conductors in a raceway, the size of conductor may vary from those shown. Tables E 310.12 through E 310.15 and notes thereto should be consulted in selecting the size of conductor for a particular installation.

Voltage. For uniform application of the provisions of chapters E 210 , E 215 and E 220 a nominal voltage of 115 and 230 volts shall be used in computing the ampere load on the conductor.

Fractions of an Ampere. Where the computations result in a fraction of an ampere, such fractions may be dropped.

Ranges. For the computation of the range loads in these examples column A of table E 220.05 has been used. For optional methods, see columns B and C of table E 220.05.

## Example No. 1. Single Family Dwelling

Dwelling has a floor area of 1500 sq. ft. exclusive of unoccupied cellar, unfinished attic, and open porches. It has a 12 kw range.
Computed Load (see E 220.04)
General Lighting Load:
1500 sq. ft. at 3 watts per sq. ft. $=4500$ watts.
Electrical Code, Volume 2
Register, November, 1961, No. 71

Minimum Number of Branch Circuits Required (see E 220.03)
General Lighting Load: $4500 \div 115=39.1$ amperes; or three 15 ampere 2 -wire circuits; or two 20 ampere 2 -wire circuits.
Small Appliance Load: Two 2-wire 20 ampere circuits (E 220.03 (2))

Minimum Size Feeders Required (see E 220.04) Computed Load

| General Lighting | 4500 watts |
| :---: | :---: |
| Small Appl. Load | 3000 watts |
| Total (without range) | 7500 watts |
| 3000 watts at $100 \%$ | 3000 watts |
| $7500-3000=4500$ watts at $35 \%$ | 1575 watts |
| Net computed (without range) | 4575 watts |
| Range Load (see table E 220.05) | 8000 watts |


For $115 / 230$ volt 3 -wire system feeders, $12,575 \div 230=55$ amperes.
Therefore, feeder size for total load may be selected on basis of 55 ampere load (see E 215.02).

Net computed load exceeds 10 kw so service conductors shall be 100 amperes (see E 230.041 Exception No. 1).

## Example No. 1 (a). Single Family Dwelling

Same conditions as Example No. 1, plus addition of one 6 ampere 230 volt room air conditioning unit and three 12 ampere 115 volt room air conditioning units. See E 422.39, E 422.40 and E 422.41.

From Example No. 1, feeder current is 55 amperes (3-wire, 230 volt)

| Line A | Neutral |
| :---: | :---: |
| 55 | Line B |
| 6 | $55 \ldots$ amperes from Example No. 1 |
| 12 | $6 \ldots-\ldots$ one 230 volt air cond. motor |
| - | $12 \ldots-$ two 115 volt air cond. motors |
| -3 |  |
| $\overline{76}$ |  |

Therefore, feeder size for total load may be selected on basis of 88 ampere load.

For feeder overcurrent protection see E 215.04 and E 430.063.
Example No. 1 (b). Single Family Dwelling
Optional Calculation for One-Family Dwelling (E 220.07)
Dwelling has a floor area of 1500 sq . ft. exclusive of unoccupied cellar, unfinished attic and open porches. It has a 12 kw range, a 2.5 kw water heater, a 1.2 kw dishwasher, 9 kw of electric space heating installed in five rooms, a 4.5 kw clothes dryer, and a 6 amp .230 volt room air conditioning unit.

Air conditioner kw is $6 \times 230 \div 1000=1.38 \mathrm{kw}$
1.38 kw is less than the connected load of 9 kw of space heating; therefore, the air conditioner load need not be included in the service calculation (see E 220.04 (12)).

1500 sq . ft. at 3 watts
Two 20 amp. appliance outlet circuits at 1500 watts each
Range (at nameplate rating)
Water heater
Dishwasher
Space heating
Clothes dryer
First 10 kw at $100 \%=10.00 \mathrm{kw}$
Remainder at $40 \%(26.7 \mathrm{kw} \times .4)=10.68 \mathrm{kw}$
Calculated load for service size $\quad 20.68 \mathrm{kw}=20,680$ watts
$20,680 \div 230=90$ amperes
Therefore, this dwelling may be served by a 100 ampere service.

## Example No. 1 (c). Single Family Dwelling

Optional Calculation for One-Family Dwelling (See E 220.07)
Dwelling has a floor area of 1500 sq. ft. exclusive of unoccupied cellar, unfinished attic and open porches. It has three-20 ampere small appliance circuits, two 4 kw wall-mounted ovens, one 5.1 kw countermounted cooking unit, a 4.5 kw water heater, a 1.2 kw dishwasher, a 4.2 kw combination clothes washer and dryer, six-7 ampere 230 volt room air conditioning units and a 1.5 kw permanently installed bathroom space heater.
Air Conditioning kw Calculation
Total amperes $6 \times 7=42.00$ amperes
$25 \%$ of largest motor $25 \times 7=1.75$ amperes
43.75 amperes
$43.75 \times 230 \div 1000=10.1 \mathrm{kw}$ of air conditioner load
Load Included at 100\%
Air conditioning
Space heater (omit, see E 220.04 (12))
Other Load

Three 20 amp . small appliance circuits at 1500 watts_- 4.5

1 cooking unit $-5.1$
Water heater 4.5

Dishwasher 1.2


 Remainder at $40 \%$ ( $22 \mathrm{kw} \times .4$ ) $\ldots \ldots$.
Total calculated load $-\ldots-\ldots-\ldots,-\ldots,-\ldots \mathrm{kw}=28,900 \mathrm{watts}$ $28,900 \div 230=126$ amperes (service rating)
Example No. 2. Small Roadside Fruitstand With No Show Windows
A small roadside fruitstand with no show windows has a floor area of 150 square feet. The electrical load consists of general lighting and a 1000 watt floodlight. There are no other outlets.
Blectrical Code, Volume 2
Register, November, 1961, No. 71

## Computed Load (E 220.04)

*General Lighting
$150 \mathrm{sq} . \mathrm{ft}$. at $3 \mathrm{watts} / \mathrm{sq}$. ft. $\times 1.25=562$ watts
( $3 \mathrm{watts} / \mathrm{sq}$. ft. for stores)
562 watts $\div 115=4.88$ amperes
One 15 ampere 2 -wire branch circuit required ( E 220.08 )
Minimum Size Service Conductor Required (E 230.041 Exception
No. 1)


Total load _-_ $1562 \div 115=13.6$ amperes
Use No. 8 service conductor (E 230.041 Exception No. 1)
Use a 30 ampere service switch or breaker ( E 230.071 )

## Example No. 3. Store Building

A store 50 feet by 60 feet, or 3,000 square feet, has 30 feet of show window.
Computed Load (E 220.04)
*General lighting load:
3,000 square feet at 3 watts per square foot $\times 1.25$ _-11,250 watts **Show window lighting load:

30 feet of 200 watts per foot
6,000 watts
Minimum Number of Branch Circuits Required (E 220.03)
***General lighting load: $11,250 \div 230=49$ amperes for 3 -wire, $115 / 230$ volts; or 98 amperes for 2 -wire, 115 volts:

Three 30 ampere, 2 -wire; and one 15 ampere, 2 -wire circuits; or
Five 20 ampere, 2 -wire circuits; or
Three 20 ampere, 2 -wire, and three 15 ampere, 2 -wire circuits; or Seven 15 ampere, 2-wire, circuits; or
Three 15 ampere, 3 -wire, and one 15 ampere, 2 -wire circuits.
Special lighting load (show window): (E 220.02 Exception No. 2 and E 220.04 (2)) : $6,000 \div 230=26$ amperes for 3-wire, $115 / 230$ volts; or 52 amperes for 2 -wire, 115 volts:

Four 15 ampere, 2-wire circuits; or
Three 20 ampere, 2 -wire circuits, or
Two 15 ampere, 3 -wire circuits.
Minimum Size Feeders (or Service Conductors) Required (E 215.02):
For 115/230 volt, 3-wire system:
Ampere load: 49 plus $26=75$ amperes. ( E 220.02 ):
Size of each feeder, No. 3
For 115 volt system:
Ampere load: 98 plus $52=150$ amperes ( E 220.02 ) :
Size of each feeder, No. 3/0

[^1]
## Example No. 4. Multi-Family Dwelling

Multi-family dwelling having a total floor area of 32,000 square feet with 40 apartments.

Meters in two banks of 20 each and individual sub-feeders to each apartment.

One-half of the apartments are equipped with electric ranges of not exceeding 12 kw each.

Area of each apartment is 800 square feet.
Computed Load for Each Apartment (Chapter E 220) :
General lighting load:
800 square feet at 3 watts per square foot _-__-_-_ 2,400 watts
Special appliance load:

Minimum Number of Branch Circuits Required for Each Apartment ( E 220.03):

General lighting load: $2,400 \div 115=21$ amperes or two 15 ampere, 2 -wire circuits; or two 20 ampere, 2 -wire circuits.
Small appliance load: Two 2 -wire circuits of No. 12 wire. (See E 220.03 (2)).
Range Circuit: $8,000 \div 230=34$ amperes or a circuit of two No, 8's and one No. 10 as permitted by E 210.09 (3).
Minimum Size Sub-Feeder Required for Each Apartment (E 215.02): Computed load (Chapter E 220) :

Small appliance load, two 20 ampere circuits _.......-3,000 watts
Total computed load (without ranges) _................ 400 watts
Application of Demand Factor:


Net computed load (without ranges) _-__-_-_-_-_ 8,840 watts


Net computed load (with ranges) ..................-11,840 watts
For 115/230 volt, 3-wire system (without ranges) :
Net computed load, $3,840 \div 230=16.7$ amperes.
Size of each sub-feeder (see E 215.02).
For 115/230 volt, 3-wire system (with ranges) :
Net computed load, $11,840 \div 230=51.5$ amperes.
Size of each ungrounded sub-feeder, No. 6.
Neutral Sub-Feeder:
Lighting and small appliance load _-.................-3,840 watts
Range load, 8,000 watts at $70 \%$ (see E 220.04 (7)) .-. 5,600 watts

$9,440 \div 230=41$ amperes
Size of neutral sub-feeder, No. 6

```
Minimum Size Feeders Required from Service Equipment to Meter
Bank (For 20 Apartments-10 with Ranges):
    Total Computed Load:
        Lighting and small appliance load, 20 }\times5,400 _-_108,000 watts
    Application of Demand Factor:
```




```
            Net computed lighting and small appliance load__ 39,750 watts
            Range load, }10\mathrm{ ranges (less than 12 kw; Col. A,
```



```
            Net computed load (with ranges) _-_-_-_-_-_-_-_ 64,750 watts
    For 115/230 volt, 3-wire system:
            Net computed load, 64,750\div230=282 amperes.
            Size of each ungrounded feeder to each meter bank:
            500,000 c.m.
Neutral Feeder:
    Lighting and small appliance load _-_-.....-_-_-_-_ 39,750 watts
    Range load: 25,000 watts at 70% (see E 220.04
```



```
            Computed load (neutral) --------------------------
    57,250\div230=249 amperes.
    Further Demand Factor (E 220.04 (7)):
        200 amperes at 100% = 200 amperes
            49 amperes at 70% = 34 amperes
    Net computed load (neutral) 234 amperes
    Size of neutral feeder to each meter bank: 300,000 c.m.
Minimum Size Main Feeder (or Service Conductors) Required
(For 40 Apartments-20 with Ranges):
    Total computed load:
        Lighting and small appliance load, 40 < 5,400 ____216,000 watts
    Application of Demand Factor:
            3,000 watts at 100% _-_-_-_-_-_-_-_-_-_-_-_-_,_-_
            117,000 watts at 35% _-__-_-_-_-_-_-_-_-_-_-_-_}40,950 watt
            96,000 watts at 25% ----------------------------------}24,000 watt
    Net computed lighting and small appliance load__ 67,950 watts
    Range load, 20 ranges (less than 12 kw, Col. A,
```




```
    For 115/230 volt, 3-wire system:
            Net computed load, 102,950 \div230=448 amperes.
            Size of each ungrounded main feeder: 1,000,000 c.m.
Neutral Feeder:
            Lighting and small appliance load
```

$\qquad$

``` 67,950 watts
Range load, 35,000 watts at 70% (see E 220.04
```




```
            92,450\div230=402 amperes.

Further Demand Factor (see E 220.04 (7)) :
200 amperes at \(100 \% \quad=200\) amperes

202 amperes at \(70 \%=141\) amperes
Net computed load (neutral) 341 amperes
Size of neutral main feeder: 600,000 c.m.
See tables E 310.12 through E 310.15, notes 8 and 12.

\section*{Example No. 5. Calculation of Neutral Feeder (See E 220.04)}

The following example illustrates the method of calculating size of neutral feeder for the computed load of a 5 -wire, 2 -phase system, where it is desired to modify the load in accordance with provisions of E 220.04.
An installation consisting of a computed load of 250 amperes connected between neutral feeder and each ungrounded feeder.
Neutral Feeder (maximum unbalance of load \(250 \mathrm{amp} . \times 140 \%=\) 350 amperes) :
200 amperes (first) at \(100 \%=200\) amperes
150 amperes (excess) at \(70 \%=105\) amperes
Computed load _-_-_-_-_-_-_-_305 amperes
Size of neutral feeder: : 500,000 c.m.

\section*{Example No. 6. Maximum Demand for Range Loads}

Table E 220.05, column A applies to ranges not over 12 kw . The application of Note 1 to ranges over 12 kw (and not over 21 kw ) is illustrated in the following examples:
A. Ranges all of same rating.

Assume 24 ranges each rated 16 kw .
From Column A the maximum demand for 24 ranges of 12 kw rating is 39 kw .
16 kw exceeds 12 kw by 4.
\(5 \% \times 4=20 \%\) ( \(5 \%\) increase for each kw in excess of 12 ).
\(39 \mathrm{kw} \times 20 \%=7.8 \mathrm{kw}\) increase.
\(39+7.8=46.8 \mathrm{kw}\) : value to be used in selection of feeders.
B. Ranges of unequal rating.

Assume 5 ranges each rated 11 kw .
2 ranges each rated 12 kw .
20 ranges each rated 13.5 kw .
3 ranges each rated 18 kw .
\(5 \times 12=60\) Use 12 kw for range rated less than 12.
\(2 \times 12=24\)
\(20 \times 13.5=270\)
\(3 \times 18=54\)
408 kw
\(408 \div 30=13.6 \mathrm{kw}\) (average to be used for computation)
From Column A the demand for 30 ranges of 12 kw rating is \(15+\) \(30=45 \mathrm{kw}\).
13.6 exceeds 12 by 1.6 (use 2.)
\(5 \% \times 2=10 \%\) ( \(5 \%\) increase for each kw in excess of 12).
\(45 \mathrm{kw} \times 10 \%=4.5 \mathrm{kw}\) increase.
\(45+4.5=49.5 \mathrm{kw}=\) value to be used in selection of feeders.
Electrical Code, Volume 2
Register, November, 1961, No. 71

Example No. 7. Ranges on a 3-Phase System
(See E 220.04 (5))
Thirty ranges rated at 12 kw each are supplied by a 3 -phase, 4 -wire, \(120 / 208\)-volt feeder, 10 ranges on each phase.
As there are 20 ranges connected to each ungrounded conductor, the load should be calculated on the basis of 20 ranges (or in case of unbalance, twice the maximum number between any two phase wires) since diversity applies only to the number of ranges connected to adjacent phases and not the total.

The current in any one conductor will be one-half the total watt load of two adjacent phases divided by the line-to-neutral voltage. In this case, 20 ranges, from table E 220.05 , will have a total watt load of 35,000 watts for two phases; therefore, the current in the feeder conductor would be:
\[
17,500 \div 120=146 \text { amperes }
\]

On a 3 -phase basis the load would be:
\[
3 \times 17,500=52,500 \text { watts. }
\]
and the current in each feeder conductor-
\[
\frac{52,500}{208 \times 1.73}=146 \text { amperes. }
\]

Example No. 8. Motors, Conductors, and Overcurrent Protection
(See E 430.022, E 430.024, E 430.032 and E 430.052)
Determine the size of conductors, the motor-running overcurvent protection, the branch circuit protection, and the feeder protection, for one \(25-\mathrm{h} . \mathrm{p}\). squirrel-cage induction motor (full-voltage starting), and two \(30-\mathrm{h} . \mathrm{p}\). wound-rotor induction motors, on a 440 -volt, 3 -phase, \(60-\) cycle supply.

\section*{Conductor Sizes}

The full-load current of the \(25-\mathrm{h} . \mathrm{p}\). motor is 32 amperes (table E 430.150). A full-load current of 32 amperes \(\times 1.25\) (E 430.022) requires a No. 8, Type R, rubber-covered conductor (table E 310.12). The full-load current of the \(30-\mathrm{h} . \mathrm{p}\). motor is 39 amperes (table E 430.150). A full-load current of 39 amperes \(\times 1.25\) ( E 430.022 ) requires a No. 6, Type R, rubber-covered conductor (table E 310.12).

The feeder conductor capacity will be 125 per cent of 39 , plus 39 , plus 32, or 120 amperes ( E 430.024 ). In accordance with table E 310.12 , this would require a No. 0, Type R, rubber-covered feeder.

Note: For Type \(R\) conductors run open in air, or for conductors with insulations other than Type R, see tables E 310.12 through E 310.15.

Overcurrent Protection
Running. The \(25-\mathrm{h} . \mathrm{p}\). motor, with full-load current of 32 amperes, must have running overcurrent protection of not over 40 amperes (Columns 2 and 3, table E 430.146). The \(30-\mathrm{h} . \mathrm{p}\). motor with full-load current of 39 amperes must have running overcurrent protection of not over 50 amperes (Columns 2 and 3, table E 430.146).

Branch Cirouit. The branch circuit of the \(25-\mathrm{h} . \mathrm{p}\). motor must have branch-circuit overcurrent protection of not over 100 amperes (Column 4, table E 430.146). The branch circuit of the \(30-\mathrm{h} . \mathrm{p}\). motor must have branch-circuit overcurrent protection of not over 60 amperes (Column 7, table E 430.146).

Feeder Circuit. The rating of the branch-circuit fuse for a \(25-\mathrm{h}, \mathrm{p}\). squirrel-cage motor is 300 per cent of 32 amperes, or 96 amperes, which necessitates the use of a 100 ampere standard size fuse (table E 430.153) ; and for a 30-h.p. wound-rotor motor is 150 per cent of 39 amperes, or 59 amperes (table E 430.153). The rating of the feeder fuse is, therefore, 100 plus 39 plus 39 which equals 178 amperes, and a 200 ampere fuse is the maximum size which may be used (see E 430.062).

The setting of a motor-branch-circuit circuit-breaker for a \(25-\mathrm{h} . \mathrm{p}\). squirrel-cage motor is 250 per cent of 32 amperes or 80 amperes (table E 430.153); for a 30 -h.p. wound-rotor motor is 150 per cent of 39 amperes or 59 amperes (table E 430.153). The maximum setting of a feeder circuit-breaker is \(80+39+39=158\) amperes (see E 430.062).```


[^0]:    *The dimensions of types RW, RHH and THW wire. Also, these dimensions to be used for new work in computing size of conduit or tubing for combinations of wires not shown in table 1, chapter E 900 .
    ${ }^{*} \mathrm{~N}^{\mathrm{No}} \mathrm{I} .14$ to No. 2.
    No. 18 to No. 8, solid; No. 6 and larger, stranded.
    The dimensions of rubber-covered conductors in column 3 of this table are to be used in computing the size of conduit or tubing for new work for combinations not shown in table 1 The dimensions in the last column of this.table may be used only for rewiring existing raceways.

[^1]:    * The above examples assume that the entire general lighting load is likely to be used for long periods of time and the load is therefore ncreased by $25 \%$ in accordance with 0220.02 , The $25 \%$ increase is not applicable to any portion of the load not used for long periods
    ** If show window load computed as per $E 220.02$, the unit load per outlet to be increased $25 \%$.
    ** The load on individual branch circuits not to exceed $80 \%$ of the branch circuit rating ( E 210.23 (2)).

