Chapter E 900

TABLES AND EXAMPLES

A. TABLES

Tables 1, 2 and 3 apply only to complete conduit systems, and do not apply to short sections of conduit used for the protection of exposed wiring from physical damage.

TABLE 1

MAXIMUM NUMBER OF CONDUCTORS IN TRADE SIZES OF CONDUIT OR TUBING

Derating factors for more than three conductors in raceways, see tables E 310.12 through E 310.15, Note 8

Types RF-2, RFH-2, R, RH, RW, RH-RW, RHW, RHH, RU, RUH, RUW, SF and SFF

Types TF, T, TW, THW, and THWN (See sections E 300.17, E 300.18, E 346.06 and E 348.06)

Size	Maximum Number of Conductors in Conduit or Tubing (Based upon % conductor fill, Table 8, Chapter E-900, for new work)											
MCM	¹ / ₂ Inch	³ ⁄ ₄ Inch	1 Inch	1¼ Inch	1½ Inch	2 Inch	2½ Inch	8 Inch	3½ Inch	4 Inch	5 Inch	6 Inch
18 16 14 12 10	7 6 4 8 2	12 10 6 5 4	20 17 10 8 7	85 80 18 15 13	49 41 25 21 17	80 68 41 84 29	115 98 58 50 41	$176 \\ 150 \\ 90 \\ 76 \\ 64$	121 103 86	155 132 110	208 173	
8 6 4 3 2 1	1 1 1	8 1 1 1 1 1	4 3 1 1 1 1	7 4 8 8 8 1	10 6 5 4 8 8	17 10 8 7 6 4	25 15 12 10 9 7	88 23 18 16 14 10	52 32 24 21 19 14	67 41 81 28 24 18	105 64 49 44 88 29	$152 \\ 98 \\ 72 \\ 63 \\ 55 \\ 42$
0 00 000 0000			1 1 1	1 1 1 1	2 1 1 1	4 3 8 2	6 5 4 8	9 8 7 6	12 11 9 8	16 14 12 10	25 22 19 16	37 32 27 23
250 800 850 400 500			an Sant	1 1 1	1 1 1 1 1	1 1 1 1 1	8 8 1 1 1	5 4 3 3 3	6 5 5 4 4	8 7 6 5	13 11 10 9 8	19 16 15 18 11
600 700 750 800 900						1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	3 3 3 2 1	4 3 3 8 8	6 5 5 4	9 8 8 7 7 7
1000 1250 1500 1750 2000						1	1 1	1 1 1 1 1	1 1 1 1 1	8 1 1 1 1	4 8 8 2 1	6 5 4 4 8

*Where an existing service run of conduit or electrical metallic tubing does not exceed 50 ft. in length and does not contain more than the equivalent of two quarterbends from end to end, two No. 4 insulated and one No. 4 bare conductors may be installed in 1-inch conduit or tubing.

TABLE 2

TRADE SIZES OF CONDUIT OR TUBING FOR NUMBER OF CONDUCTORS Lead-Covered Types RL and RHL-600 V (See sections E 346.06 and E 348.06)

Size AWG MCM	Si	Numl ngle C Cal	ber of onduct bles	tor		Numl 2-Con Cal	ber of ductor bles		Number of 3-Conductor Cables			
TAL CIVI	1	2	3	4	1	2	3	4	1	2	3	4
14 12 10 8	121/21/21/2	³ /4 ³ /4 ³ /4 1		$1 \\ 1 \\ 1 \\ 1^{1/2}$	84 84 34 34 1	$1\\1\\1\frac{1}{4}\\1\frac{1}{4}$	$1\\1\frac{1}{1}\frac{1}{4}\\1\frac{1}{4}\frac{1}{1}\frac{1}{2}$	$1\frac{1}{14}\\1\frac{1}{4}\\1\frac{1}{2}\\2$	$1 \\ 1 \\ 1 \\ 1 \\ 1$	$1\frac{1}{4}\\1\frac{1}{4}\\1\frac{1}{2}\\2$	$1\frac{1}{2}$ $1\frac{1}{2}$ 2 2	$1\frac{1}{2}$ 2 $2\frac{1}{2}$
6 4 3 2 1	84 84 84 1 1	$\frac{11}{14}$ $\frac{11}{14}$ $\frac{11}{4}$ $\frac{11}{4}$ $\frac{11}{4}$ $\frac{11}{4}$	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ 2	$ \begin{array}{c} 1 \frac{1}{2} \\ 1 \frac{1}{2} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	$1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{2}$	$ \begin{array}{c} 1 \frac{1}{2} \\ 2 \\ $	$2 \\ 2^{1/2} \\ 2^{1/2} \\ 2^{1/2} \\ 3$	$2\frac{1}{2}$ $2\frac{1}{2}$ 3 $3\frac{1}{2}$ $3\frac{1}{2}$	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \end{array} $	$2\frac{1}{2}$ 3 3 3 3 3 1/2	3 3 3 3 1/2 4	$ 3 \frac{1}{2} 3 \frac{1}{2} 4 5 $
0 00 000 0000	$1\\1\\1\frac{1}{1\frac{1}{4}}\\1\frac{1}{4}$	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2^{1/2} \end{array} $	$2 \\ 2 \\ 2^{1/2} \\ 2^{1/2} \\ 2^{1/2}$	$2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$ 3	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2^{1/2} \end{array} $	$2\frac{1}{2}$ 3 3 3 3	$ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 2 3 \\ 3 \\ 2 3$	$ \begin{array}{r} 31/2 \\ 4 \\ 4 \\ 5 \end{array} $	$2 \\ 2^{1/2} \\ 2^{1/2} \\ 3 \\ 3$	4 4 5 5	5 5 5 6	5 5 6 6
250 300 350 400 500	$\frac{1\frac{1}{4}}{1\frac{1}{2}}$	2½ 3 3 3 3	3 3 3 3 ¹ ⁄2	$ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 3 \\ 4 $			·····		$ \begin{array}{c} 8 \\ 3 \\ $	6 6 6 6	6 6 6 6	
600 700 750 800 900	2 2 2 2 2 2 2	31⁄2 4 4 4 4	4 4 5 5	5 5 5 5 5 5								
1000 1250 1500 1750 2000	2½ 8 8 8 8 8 8 1⁄2	5 5 5 6 6	5 5 6 6 6	6 6 								

The above sizes apply to straight runs or with nominal offsets equivalent to not more than 2 quarter-bends. See section E 346.10 for bends in conduit.

510

TABLE 3

COMBINATION OF CONDUCTORS

(See sections E 346.06 and E 348.06)

For groups or combination of conductors not included in table 1, chapter E 900, it is recommended that the conduit or tubing be of such size that the sum of the cross-sectional areas of the individual conductors will not be more than the percentage of the interior crosssectional area of the conduit or tubing shown in the following table:

FRIK URINT ARDA UR UUNDURT UK	R. (CENT	AREA	OF	CONDUIT	or	TUBING
-------------------------------	------	------	------	----	---------	----	--------

	Number of Conductors							
	1	2	3	4	Over 4			
*Conductors (not lead covered) Lead covered conductors **For rewiring existing raceways for in-	53 55	31 30	43 40	40 38	40 35			
to increase the size of the raceway due to structural conditions	60	40	50	50	50			

Note 1. See note to table 5 for size of conduit or tubing for combinations of conductors not shown in table 1.

Note 2. For carrying capacity of more than 3 conductors in a conduit or tubing, see tables E 310.12 through E 310.15/ note 8.

Note 3. See tables 4 through 7, chapter E 900, for dimensions of conductors, conduit and tubing.

*Note 4. Use actual dimensions of wire or cable unless it is smaller than dimension of RW. Use dimension of RW as minimum dimension.

**Note 5. For rewiring, figure dimension of wire or cable actually used.

Note 6. For exposed runs of service conduit or tubing not over 30 feet in length, the size of conduit or tubing may be determined as permitted for rewring.

Note 7. For multi-conductor cables use actual cable cross-section areas. Conductor numbers at head of columns shall be taken as numbers of cables.

Note 8. For bare wires, use actual area from table 8.

Tables 4 through 7. Chapter E 900. Tables 4 through 7 give the nominal size of conductors and conduit or tubing recommended for use in computing size of conduit or tubing for various combinations of conductors. The dimensions represent average conditions only, and while variations will be found in dimensions of conductors and conduit of different manufacture, these variations will not affect the computation.

TABLE 4

DIMENSIONS AND PER CENT AREA OF CONDUIT AND OF TUBING

Areas	of	conduit	or	tubing	for th	e comb	inations	of	wires	permitte	эđ
				in tab	le 3, c	hapter	E 900				

Electrical Code, Volume 2

							Area	-Square I	aches			le en		
	Internal		Not Lead Covered			Lead Covered			èd		Rewiring		ered	
Trade Size	Diameter Inches	Total 100%	1 Cond. 53%	2 Cond. 31%	3 Cond. 43%	4 Cond. and Over 40%	1 Cond. 55%	2 Cond. 30%	8 Cond. 40%	4 Cond. 38%	Over 4 Cond. 35%	1 Cond. 60%	2 Cond. 40%	3 Cond. and Over 50%
1/2 3/4 1 1/4 1/2	$\begin{array}{r} .622\\ .824\\ 1.049\\ 1.380\\ 1.610\end{array}$	$\begin{array}{r} .30\\ .53\\ .86\\ 1.50\\ 2.04\end{array}$.16 .28 .46 .80 1.08	.09 .16 .27 .47 .63	$.13 \\ .23 \\ .37 \\ .65 \\ .88$.12 .21 .34 .60 .82	.17.29.47.831.12	.09 .16 .26 .45 .61	.12 .21 .34 .60 .82	.11 .20 .33 .57 .78	$.11\\.19\\.30\\.53\\.71$	$\begin{array}{r} .18\\ .32\\ .52\\ .90\\ 1.22\end{array}$.12 .21 .34 .60 .82	$\begin{array}{r} .15\\ .27\\ .43\\ .75\\ 1.02\end{array}$
$2 \\ 2^{1/2} \\ 3 \\ 3^{1/2}$	$\begin{array}{r} 2.067 \\ 2.469 \\ 3.068 \\ 3.548 \end{array}$	3.36 4.79 7.38 9.90	$ \begin{array}{r} 1.78 \\ 2.54 \\ 3.91 \\ 5.25 \end{array} $	$ \begin{array}{r} 1.04 \\ 1.48 \\ 2.29 \\ 3.07 \end{array} $	$1.44 \\ 2.06 \\ 3.17 \\ 4.26$	$1.34 \\ 1.92 \\ 2.95 \\ 3.96$	$1.85 \\ 2.63 \\ 4.06 \\ 5.44$	$1.01 \\ 1.44 \\ 2.21 \\ 2.97$	$1.34 \\ 1.92 \\ 2.95 \\ 3.96$	$1.28 \\ 1.82 \\ 2.80 \\ 3.76$	$1.18 \\ 1.68 \\ 2.58 \\ 3.47$	2.02 2.87 4.43 5.94	$1.34 \\ 1.92 \\ 2.95 \\ 3.96$	$ \begin{array}{r} 1.68 \\ 2.40 \\ 3.69 \\ 4.95 \\ \end{array} $
4 5 6	$4.026 \\ 5.047 \\ 6.065$	$\begin{array}{r} 12.72 \\ 20.00 \\ 28.89 \end{array}$	$6.74 \\ 10.60 \\ 15.81$	3.94 6.20 8.96	$5.47 \\ 8.60 \\ 12.42$	$5.09 \\ 8.00 \\ 11.56$	7.00 11.00 15.89	3.82 6.00 8.67	$5.09 \\ 8.00 \\ 11.56$	$4.83 \\ 7.60 \\ 10.98$	$4.45 \\ 7.00 \\ 10.11$	$7.63 \\ 12.00 \\ 17.33$	5.09 8.00 11.56	$6.36 \\ 10.00 \\ 14.45$

WISCONSIN ADMINISTRATIVE CODE

TABLE 5

Gino	Types RF-2, RFH RHH, RHW, RH	-2, R, RH, -RW, RW	Types TF, ' TW, RU**, 1	T, THW***, RUH**, RUW	Туре Т	'HWN
AWG MCM	Approx. Diam. Inches	Approx. Area Sq. In.	Approx. Diam. Inches	Approx. Area Sq. In.	Approx. Diam. Inches	Approx. Area Sq. In.
Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
18 16	$.146\\.158$.0167 .0196	.106 .118	.0088 .0109		
14 14	$\frac{2}{64}$ in171 $\frac{3}{64}$ in	.0230	.131	.0135	.105	.0087
$14 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ $	2/64 in188 3/64 in221*	.0278 .0384*	.162*** .148	.0206*** .0172	.122	.0117
12 10 10	.242	.0460	.179*** .168 .199***	$.0251^{***}$.0224 $.0311^{***}$.153	.0184
8 8	.311	.0760	.228 .259***	.0408 .0526***	.201	.0317
6 4 8 2 1	$.897 \\ .452 \\ .481 \\ .513 \\ .588$	$\begin{array}{r} .1238\\ .1605\\ .1817\\ .2067\\ .2715\end{array}$.328 .372 .401 .438 .508	.0819 .1087 .1263 .1478 .2027	$\begin{array}{r} .257\\ .328\\ .356\\ .388\\ .450\end{array}$.0519 .0845 .0995 .1182 .1590
0 00 000 0000	.629 .675 .727 .785	$\begin{array}{r} .3107\\ .3578\\ .4151\\ .4840\end{array}$.549 .595 .647 .705	.2367 .2781 .3288 .3904	.491 .537 .588 .646	$.1893 \\ .2265 \\ .2715 \\ .3278$
250 300 350 400 500	.868 .933 .985 1.032 1,119	$\begin{array}{r} .5917\\ .6837\\ .7620\\ .8365\\ .9834\end{array}$.788 .843 .895 .942 1.029	.4877 .5581 .6291 .6969 .8316	.716 .771 .822 .869 .955	.4026 .4669 .5307 .5931 .7163
600 700 750 800 900	$1.233 \\ 1.304 \\ 1.339 \\ 1.372 \\ 1.435$	$1.1940 \\ 1.3355 \\ 1.4082 \\ 1.4784 \\ 1.6173$	$1.143 \\ 1.214 \\ 1.249 \\ 1.282 \\ 1.345$	$\begin{array}{r} 1.0261 \\ 1.1575 \\ 1.2252 \\ 1.2908 \\ 1.4208 \end{array}$		
1000 1250 1500 1750 2000	$1.494 \\ 1.676 \\ 1.801 \\ 1.916 \\ 2.021$	$1.7531 \\ 2.2062 \\ 2.5475 \\ 2.8895 \\ 3.2079$	1.4041.5771.7021.8171.922	$\begin{array}{c} 1.5482 \\ 1.9532 \\ 2.2748 \\ 2.5930 \\ 2.9013 \end{array}$		

DIMENSIONS OF RUBBER-COVERED AND THERMOPLASTIC-COVERED CONDUCTORS

*The dimensions of types RW and RHH wire. Also these dimensions to be used for new work in computing size of conduit or tubing for combinations of wires not shown in table 1, chapter E 900. **No. 14 to No. 2. ***Dimensions of THW wire in sizes 14 to 8. No. 6 THW wire and larger is the same dimen-sions as T wire.

No. 18 to No. 8, solid; No. 6 and larger, stranded.

The dimensions of rubber-covered conductors in column 3 of this table are to be used in computing the size of conduit or tubing for new work for combinations not shown in table 1. For rewiring existign raceways, the areas in columns 5 or 7 are to be used.

Size	Single C	onductor	Two Cond	luctor	Three C	onductor
MCM	Diam. Inches	Area Sq. Ins.	Diam. Inches	Area Sq. Ins.	Diam. Inches	Area Sq. Ins.
14 12 10 8	$.28\\.29\\.35\\.41$.062 .066 .096 .132	.28 x .47 .31 x .54 .35 x .59 .41 x .71	$.115 \\ .146 \\ .180 \\ .255$. 59 . 62 . 68 . 82	.273 .301 .363 .528
6 4 2 1	.49 .55 .60 .67	.188 .237 .283 .352	.49 x .86 .54 x .96 .61 x 1.08 .70 x 1.23	.369 .457 .578 .756	$.97 \\ 1.08 \\ 1.21 \\ 1.38$	$\begin{array}{r} .738\\ .916\\ 1.146\\ 1.49\end{array}$
0 00 000 0000	.71 .76 .81 .87	.396 .454 .515 .593	.74 x 1.32 .79 x 1.41 .84 x 1.52 .90 x 1.64	$\substack{.859\\.980\\1.123\\1.302}$	$1.47 \\ 1.57 \\ 1.69 \\ 1.85$	$1.70 \\ 1.94 \\ 2.24 \\ 2.68$
$250 \\ 300 \\ 350 \\ 400 \\ 500$	$\begin{array}{r} .98\\ 1.04\\ 1.10\\ 1.14\\ 1.28\end{array}$	$\begin{array}{r} .754 \\ .85 \\ .95 \\ 1.02 \\ 1.18 \end{array}$			$2.02 \\ 2.15 \\ 2.26 \\ 2.40 \\ 2.59$	$egin{array}{c} 8.20 \\ 8.62 \\ 4.02 \\ 4.52 \\ 5.28 \end{array}$

TABLE 6 DIMENSIONS OF LEAD-COVERED CONDUCTORS Types RL, RHL, and RUL

Note: No. 14 to No. 8, solid conductors: No. 6 and larger, stranded conductors. Data for 2/64-inch insulation not yet compiled.

TABLE 7

DIMENSIONS OF ASBESTOS-VARNISHED-CAMBRIC INSULATED CONDUCTORS Types AVA, AVB, and AVL

Type AVL Type AVA Type AVB Size AWG MCM Approx. Diam. Approx. Diam. Approx. Area Approx. Diam. Approx. Approx. Area Area Sq. In. Sq. In. Inches Sq. In. Inches Inches .080 .205 .033 .320 14 12 .245 .047 .225.245.040 .340 .091 .055 .265 .064 .360 .10210 .810 .075 .270 .057 .390 .119 8 .122 .094 .430 .145 6 .395 .345 .155 .181 .255 .445 .895 .123 .480 42 .200 .460 .166 .570 .300 1 .585 .268 .540 .229 .620 .660 .705 .755 .807 .264 .841 0 .625 .580 .390 .307 00 .670 .858 .625 .447 .675 .358 000 .720 .406 .521 0000 .780 .478 .735 .425.815 .885 .616 $.855 \\ .910 \\ .965$.572.955 .715 2501,010 .800 .940 .692 .649 300 .781 1.060 .885 .778 350 995 .800 1,105 .960 1.040 .850 1.010 400 1.118 1.190 500 1.125 .995 1.095 .945 $1.26 \\ 1.34$ 1.065 1.185 1.01 1.265550 1.165 1.175 1.09 1.305 600 1.205 1.140 1.41 1.340 650 1.240 1.21 1.210 1.15 $1.375 \\ 1.410$ $1.49 \\ 1.57$ 700 1.275 $1.28 \\ 1.85$ $1.245 \\ 1.280$ $\substack{\textbf{1.22}\\\textbf{1.29}}$ 1.310 1.36 1.440 1.63 1.315 800 1.345 1.42 $1.345 \\ 1.375 \\ 1.405 \\ 1.435$ $1.43 \\ 1.49 \\ 1.55 \\ 1.55 \\ 1.65 \\$ 1.70 $1.49 \\ 1.55 \\ 1.62 \\$ 1.470 1.375 850 $1.78 \\ 1.85$ 1.505 900 1.405 1.535 950 1.435 1.565 1.93 1.62 1.69 1000 1.465

Note: No. 14 to No. 8, solid, No. 6, and larger, stranded; except AVL where all sizes are stranded. Electrical Code, Volume 2 Barriston April 1064 No. 100

VARNISHED-CAMBRIC INSULATED CONDUCTORS Type V

The insulation thickness for varnished-cambric conductors, type V is the same as for rubber-covered conductors, type R, except for Nos. 14 and 12 which have 3/64-inch insulation for varnished-cambric and 2/64-inch insulation for rubber-covered conductors and for No. 8 which has 3/64-inch insulation for varnished-cambric, and 4/64-inch insulation for rubber-covered conductors. See table E 310.02 (2). Tables 1 and 2 may, therefore, be used for the number of varnishedcambric insulated conductors in a conduit or tubing.

TABLE 8

PROPERTIES OF CONDUCTORS

		Concent Stran Condu	ric Lay Ided Ictors	Ba Condi	re	D. C. Re	sistance Ol t 25°C, 779	ims M Ft.
Size AWG	Area Cir.		Diam.		*Area	Cor	per	Aluminum
5	Mils.	No. Wires	Each Wire Inches	Diam. Inches	Sq. Inches	Bare Cond.	Tin'd. Cond.	
10	1094	Cali J	0.109	0.109	0019	0 510	0.55	10.0
16 16	2583	Solid	.0508	.0403	.0020	6.510 4.094	6.77 4.25	6.85
14 12 10 8	$\begin{array}{r} 4107 \\ 6530 \\ 10380 \\ 16510 \end{array}$	Solid Solid Solid Solid	$.0641 \\ .0808 \\ .1019 \\ .1285$	$.0641 \\ .0808 \\ .1019 \\ .1285$.0032 .0051 .0081 .0130	2.575 1.619 1.018 .641	$2.68 \\ 1.69 \\ 1.06 \\ .660$	$\begin{array}{r} 4.31 \\ 2.71 \\ 1.70 \\ 1.07 \end{array}$
6 4 3 2 1	$\begin{array}{r} 26250\\ 41740\\ 52640\\ 66370\\ 83690 \end{array}$	7 7 7 7 19	$\begin{array}{r} .0612\\ .0772\\ .0867\\ .0974\\ .0664\end{array}$.184 .232 .260 .292 .332	.027 .042 .053 .067 .087	$\begin{array}{r} .410\\ .259\\ .205\\ .162\\ .129\end{array}$.426 .269 .213 .169 .184	$\begin{array}{r} .674\\ .428\\ .336\\ .266\\ .211\end{array}$
0 00 000 0000	105500 133100 167800 211600	19 19 19 19	.0745 .0837 .0940 .1055	.373 .418 .470 .528	$.109\\.137\\.173\\.219$	$.102 \\ .0811 \\ .0642 \\ .0509$.106 .0844 .0668 .0524	$.168 \\ .134 \\ .105 \\ .0837$
	$\begin{array}{r} 250000\\ 300000\\ 350000\\ 400000\\ 500000\end{array}$	37 37 37 37 37 37	$\begin{array}{r} .0822\\ .0900\\ .0973\\ .1040\\ .1162\end{array}$.575 .630 .681 .728 .814	$\begin{array}{r} .260\\ .312\\ .364\\ .416\\ .520\end{array}$	$\begin{array}{r} .0431 \\ .0360 \\ .0308 \\ .0270 \\ .0216 \end{array}$.0444 .0371 .0318 .0278 .0225	$\begin{array}{r} .0708 \\ .0590 \\ .0506 \\ .0443 \\ .0354 \end{array}$
Aliphika is Saliphika is	600000 700000 750000 800000 900000	$\begin{array}{r} & 61 \\ & 61 \\ & 61 \\ & 61 \\ & 61 \\ & 61 \end{array}$.0992 .1071 .1109 .1145 .1215	$\begin{array}{r} .893 \\ .964 \\ .998 \\ 1.031 \\ 1.093 \end{array}$.626 .730 .782 .835 .938	.0180 .0154 .0144 .0135 .0120	.0185 .0159 .0148 .0139 .0124	.0295 .0253 .0236 .0221 .0197
	$\begin{array}{c} 1000000\\ 1250000\\ 1500000\\ 1750000\\ 2000000\end{array}$	$ \begin{array}{r} 61\\ 91\\ 91\\ 127\\ 127\\ 127\\ \end{array} $	$\begin{array}{r} .1280\\ .1172\\ .1284\\ .1174\\ .1255\end{array}$	$\begin{array}{c} 1.152 \\ 1.289 \\ 1.412 \\ 1.526 \\ 1.631 \end{array}$	$\begin{array}{r} 1.042 \\ 1.305 \\ 1.566 \\ 1.829 \\ 2.089 \end{array}$.0108 .00864 .00719 .00617 .00539	.0111 .00890 .00740 .00636 .00555	$\begin{array}{r} .0176\\ .0142\\ .0118\\ .0101\\ .00884\end{array}$

*Area given is that of a circle having a diameter equal to the overall diameter of a stranded conductor.

Conductor. The values given in the table are those given in Circular 31 of the National Bureau of Standards except that those shown in the 8th column are those given in Specification B33 of the American Society for Testing Materials. The resistance values given in the last three columns are applicable only to direct current. When conductors larger than No. 4/0 are used with alternating current the multiplying factors in table 9, chapter E 900 should be used to compensate for skin effect.

TABLE 9

	Multiplying Factor								
Size	For Non-metallic in Air or Non-r	Sheathed Cables netallic Conduit	For Metallic Sh All Cables in M	eathed Cables or etallic Raceways					
	Copper	Aluminum	Copper	Aluminum					
Up to 3 AWG 2 1 0 000 250000 CM 250000 CM 300000 CM 400000 CM 600000 CM 700000 CM 1000000 CM 1250000 CM 1250000 CM 1250000 CM 1250000 CM	$\begin{array}{c} 1.\\ 1.\\ 1.\\ 1.\\ 001\\ 1.001\\ 1.002\\ 1.004\\ 1.005\\ 1.006\\ 1.009\\ 1.011\\ 1.018\\ 1.025\\ 1.084\\ 1.039\\ 1.044\\ 1.067\\ 1.102\\ 1.142\\ 1.185\\ 1.233\\ \end{array}$	$\begin{array}{c} 1.\\ 1.\\ 1.\\ 1.\\ 000\\ 1.001\\ 1.002\\ 1.002\\ 1.003\\ 1.004\\ 1.005\\ 1.007\\ 1.016\\ 1.018\\ 1.015\\ 1.017\\ 1.026\\ 1.040\\ 1.058\\ 1.079\\ 1.100\\ \end{array}$	$1. \\ 1.01 \\ 1.01 \\ 1.02 \\ 1.03 \\ 1.04 \\ 1.05 \\ 1.06 \\ 1.07 \\ 1.08 \\ 1.10 \\ 1.13 \\ 1.16 \\ 1.13 \\ 1.16 \\ 1.19 \\ 1.21 \\ 1.22 \\ 1.30 \\ 1.41 \\ 1.58 \\ 1.67 \\ 1.82$	$1.\\1.00\\1.00\\1.00\\1.01\\1.01\\1.02\\1.02\\1.$					

MULTIPLYING FACTORS FOR CONVERTING D. C. RESISTANCE TO 60 CYCLE A. C. RESISTANCE

B. EXAMPLES

Selection of Conductors. In the following examples, the size of conductor has been selected on the basis of the allowable current-carrying capacities tabulated in the second column of table E 310.12./If other types of insulated conductors are used, or if the conductors are run open, or with more than 3 conductors in a raceway, the size of conductor may vary from those shown. Tables E 310.12 through E 310.15 and notes thereto should be consulted in selecting the size of conductor for a particular installation.

Voltage. For uniform/application of the provisions of chapters E 210, E 215 and E 220 a nominal voltage of 115 and 230 volts shall be used in computing the ampere load on the conductor.

Fractions of an Ampere. Where the computations result in a fraction of an ampere, such fractions may be dropped.

Ranges. For the computation of the range loads in these examples column A of table E 220.05° has been used. For optional methods, see columns B and C of table E 220.05°

Example No. 1. Single Family Dwelling

Dwelling has a floor area of 1500 sq. ft. exclusive of unoccupied cellar, unfinished attic, and open porches. It has a 12 kw range.

Computed Load (see E 220.04)∕

General Lighting Load:

1500 sq. ft. at 3 watts per sq. ft. = 4500 watts.

 $4500 \div 115 = 39.1$ amperes; or three 15 ampere 2-wire circuits; or two 20 ampere 2-wire circuits.

Small Appliance Load: Two 2-wire 20 ampere circuits (E 220.03 (2))

Minimum Size Feeders Required (see E 220.04)

Computed Load

in paroa mona	
General Lighting450	0 watts
Small Appl. Load300	0 watts
Total (without range)750	0 watts
3000 watts at 100%300	0 watts
7500 - 3000 = 4500 watts at $35%$ 157	5 watts

Net computed (without range) _____4575 watts Range Load (see table E 220.05) _____8000 watts

Net computed (with range) _____12,575 watts For 115/230 volt 3-wire system feeders, $12,575 \div 230 = 55$ amperes. Therefore, feeder size for total load may be selected on basis of 55 ampere load (see E 215.02).

The service conductors shall be 100 ampere (see E 230.041(1) / Exception No. 1).

Example No. 1 (a). Single Family Dwelling

Same conditions as Example No. 1, plus addition of one 6 ampere 230 volt room air conditioning unit and three 12 ampere 115 volt room air conditioning units. See E 422.39, E 422.40 and E 422.41.

From Example No. 1, feeder current is 55 amperes (3-wire, 230 volt)

Line	A	Neutral	Line B		
55			55ampe	eres from Example No. 1	
6			6one 2	230 volt air cond. motor	
12			12two	115 volt air cond. motors	
			12one 1	115 volt air cond. motor	
3			$3_{25\%}$	of largest motor (E 430.024	V
			see a start of the second		
76			88ampe	eres per line	
7713		e	·		20

Therefore, feeder size for total load may be selected on basis of 88 ampere load.

For feeder overcurrent protection see E 215.04 and E 430.063.

Example No. 1 (b). Single Family Dwelling

Optional Calculation for One-Family Dwelling (E 220.07)

Dwelling has a floor area of 1500 sq. ft. exclusive of unoccupied cellar, unfinished attic and open porches. It has a 12 kw range, a 2.5 kw water heater, a 1.2 kw dishwasher, 9 kw of electric space heating installed in five rooms, a 4.5 kw clothes dryer, and a 6 amp. 230 volt room air conditioning unit.

Air conditioner kw is $6 \times 230 \div 1000 = 1.38$ kw 1.38 kw is less than the connected load of 9 kw of space heating; therefore, the air conditioner load need not be included in the service calculation (see E 220.04 (12)).

517

1500 sq. ft. at 3 watts			4	1.5	kw
Two 20 amp. appliance outlet circuits	at 1500 watts	each .	î	3.0	kw
Range (at nameplate rating)			12	2.0	kw
Water heater			2	2.5	kw
Dishwasher			:	1.2	kw
Space heating			(9.0	kw
Clothes dryer				4.5	kw

36.7 kw

First 10 kw at 100% = 10.00 kw Remainder at 40% (26.7 kw \times .4) = 10.68 kw

Calculated load for service size 20.68 kw = 20,680 watts $20,680 \div 230 = 90$ amperes

Therefore, this dwelling may be served by a 100 ampere service.

Example No. 1 (c). Single Family Dwelling

Optional Calculation for One-Family Dwelling (See E 220.07) Dwelling has a floor area of 1500 sq. ft. exclusive of unoccupied cellar, unfinished attic and open porches. It has three-20 ampere small appliance circuits, two 4 kw wall-mounted ovens, one 5.1 kw countermounted cooking unit, a 4.5 kw water heater, a 1.2 kw dishwasher, a 4.2 kw combination clothes washer and dryer, six-7 ampere 230 volt room air conditioning units and a 1.5 kw permanently installed bathroom space heater.

Air Conditioning kw Calculation

Total amperes $6 \times 7 = 42.00$ amperes 25% of largest motor $.25 \times 7 = 1.75$ amperes

43.75	amperes
	00444 0 0 4 0 10

$43.75 \times 230 \div 1000 = 10.1$. kw of air conditioner load	
oad Included at 100%		

_10.1 kw Air conditioning _____

Space heater (omit, see E 220.04 (12))

υ	۱tl	rer	Loaa

L

Water heater 4.5 Dishwasher 1.2 Washer/Dryer 4.2
Dishwasher1.2 Vasher/Dryer4.2
/asher/Dryer4.2
a a construction de la construction

Total calculated load 28.9 kw = 28.900 watts $28,900 \div 230 = 126$ amperes (service rating)

Example No. 2. Small Roadside Fruitstand With No Show Windows A small roadside fruitstand with no show windows has a floor area of 150 square feet. The electrical load consists of general lighting and a 1000 watt floodlight. There are no other outlets.

Computed Load (E 220.04)

*General Lighting

150 sq. ft. at 3 watts/sq. ft. \times 1.25 = 562 watts

(3 watts/sq. ft. for stores)

562 watts \div 115 = 4.88 amperes

One 15 ampere 2-wire branch circuit required (E 220.03)

Minimum Size Service Conductor Required (E 230.041(2) Exception No. 2).

Computed load _____ 562 watts Floodlight load ______1000 watts

Total load ______1562 \div 115 = 13.6 amperes

Use No. 8 service conductor (E 230.041(2) Exception No. 2).

Use a 30 ampere service switch or breaker (E 230.071(1) (b) Exception No. 2).

Example No. 3. Store Building

A store 50 feet by 60 feet, or 3,000 square feet, has 30 feet of show window.

Computed Load (E 220.02)

*General lighting load:

3,000 square feet at 3 watts per square foot \times 1.25_11,250 watts **Show window lighting load:

30 feet of 200 watts per foot _____ 6,000 watts

Minimum Number of Branch Circuits Required (E 220.03)

***General lighting load: $11,250 \div 230 = 49$ amperes for 3-wire, 115/230 volts; or 98 amperes for 2-wire, 115 volts:

Three 30 ampere, 2-wire; and one 15 ampere, 2-wire circuits; or Five 20 ampere, 2-wire circuits; or

Three 20 ampere, 2-wire, and three 15 ampere, 2-wire circuits; or Seven 15 ampere, 2-wire, circuits; or

Three 15 ampere, 3-wire, and one 15 ampere, 2-wire circuits.

Special lighting load (show window): (E 220.02(5) (b)/Éxception No. 2): 6,000 \div 230 = 26 amperes for 3-wire, 115/230 volts; or 52 amperes for 2-wire, 115 volts:

Four 15 ampere, 2-wire circuits; or

Three 20 ampere, 2-wire circuits, or

Two 15 ampere, 3-wire circuits.

Minimum Size Feeders (or Service Conductors) Required (E 215.02): For 115/230 volt, 3-wire system:

Ampere load: 49 plus 26 = 75 amperes. (E 220.04):

Size of each feeder, No. 3

For 115 volt system:

Ampere load: 98 plus 52 = 150 amperes (E 220.04):

Size of each feeder, No. 3/0

* The above examples assume that the entire general lighting load is likely to be used for long periods of time and the load is therefore increased by 25% in accordance with E 220.02. The 25% increase is not applicable to any portion of the load not used for long periods.

** If show window load computed as per E 220.02, the unit load per outlet to be increased 25%.

*** The load on individual branch circuits not to exceed 80% of the branch circuit rating (\mathbb{E} 210.23 (2)).

Electrical Code, Volume 2 Register, April, 1964, No. 100

Example No. 4. Multi-Family Dwelling

Multi-family dwelling having a total floor area of 32,000 square feet with 40 apartments.

Meters in two banks of 20 each and individual sub-feeders to each apartment.

One-half of the apartments are equipped with electric ranges of not exceeding 12 kw each.

Area of each apartment is 800 square feet.

Computed Load for Each Apartment (Chapter E 220V:

General lighting load:

800 square feet at 3 watts per square foot _____2,400 watts Special appliance load:

Electric range _____8,000 watts

Minimum Number of Branch Circuits Required for Each Apartment (E 220.03):

General lighting load: $2,400 \div 115 = 21$ amperes or two 15 ampere, 2-wire circuits; or two 20 ampere, 2-wire circuits.

Small appliance load: Two 2-wire circuits of No. 12 wire. (See E 220.03 (2))

Range Circuit: $8,000 \div 230 = 34$ amperes or a circuit of two No. 8s and one No. 10 as permitted by E 210.19(3):

Minimum Size Sub-Feeder Required for Each Apartment (E 215.02): Computed load (Chapter E 220):

General lighting load	2,400 watts
Small appliance load, two 20 am	pere circuits3,000 watts
(a) Constraint of the second s	
Total computed load (without	ranges)5,400 watts

 Application of Demand Factor:

 3,000 watts at 100%

 2,400 watts at 35%

Net computed load (without ranges) _____3,840 watts Range load _____8,000 watts

Net computed load (with ranges) _____11,840 watts For 115/230 volt, 3-wire system (without ranges): Net computed load, $3,840 \div 230 = 16.7$ amperes.

Size of each sub-feeder (see E 215.02).

For 115/230 volt, 3-wire system (with ranges): Net computed load, $11,840 \div 230 = 51.5$ amperes.

Size of each ungrounded sub-feeder, No. 6.

Neutral Sub-Feeder:

Lighting ar	ıd small	appliance	load		3,840	watts
Range load,	8,000 w	atts at 70%	(see E	220.04 ($5)\sqrt{-5.600}$	watts

Net computed load (neutral) _____9,440 watts $9,440 \div 230 = 41$ amperes

Size of neutral sub-feeder, No. 6

Electrical Code, Volume 2 Register, April, 1964, No. 100

All and a second

Minimum Size Feeders Required from Service Equipm Bank (For 20 Apartments—10 with Ranges):	ent to	Meter
Total Computed Load: Lighting and small appliance load, $20 \times 5,400$	108,000	watts
Application of Demand Factor:	9 000	and the
105,000 Watts at 100%	3,000	watts
100,000 watts at 50%	30,790	watts
Net computed lighting and small appliance load Range load, 10 ranges (less than 12 kw; Col. A, table E 220.05)	39,750 25,000	watts watts
· 사람은 2017년 1월 28일 전 1월 2017년 1월 2017년 1월 2017년 1월 2		
Net computed load (with ranges)	64,750	watts
For 115/230 volt, 3-wire system:		
Net computed load, $64,750 \div 230 = 282$ amperes.		
Size of each ungrounded feeder to each meter bank:		
Noutral Fooder:		
Lighting and small appliance load	99 750	watte
Range load: 25,000 watts at 70% (see E 220.04	00,100	112000
(5))/	17,500	watts
Computed load (neutral)	57,250	watts
$57,250 \div 230 = 249$ amperes.		
Further Demand Factor (E 220.04 (5))		
200 amperes at 100% = 200 amperes		
49 amperes at 70% = 34 amperes		
$\mathbf{h} = \mathbf{h} + $		
Net computed load (neutral) 254 amperes	m	
Size of neutral receir to each meter bank. 500,000 c.		
(For 10 A newtmonts 20 with Banges);	squirea	
Total computed load:		
Lighting and small appliance load 40×5400	216 000	watts
Annication of Demand Factor:	-10,000	110000
3.000 watts at 100%	3.000	watts
117.000 watts at 35%	40.950	watts
96.000 watts at 25%	24,000	watts
	an a	
Net computed lighting and small appliance load	67,950	watts
Range load, 20 ranges (less than 12 kw, Col. A,		
table E 220.05/	35,000	watts
	100.050	
Net computed load	102,950	watts
FOr 11D/230 volt, 5-wire system:		
Net computed load, $102,900 - 250 = 446$ amperes.		
Size of each ungrounded main feeder: 1,000,000 c.m.	$m_{1}^{2}=0, -1, d$	
Lighting and small appliance load	67,950	watte
Range load, 35,000 watts at 70% (see E 220.04	51,000	11 2000
(5))	24,500	watts
Computed load (neutral)	92,450	watts
$92,450 \div 230 = 402$ amperes.		- 14 - 1
Electrical C	ode Vol	ume 9

Register, April, 1964, No. 100

Further Demand Factor	(see E 220.04 (5))?
200 amperes at 100%	= 200 amperes
202 amperes at 70%	= 141 amperes

Net computed load (neutral) 341 amperes Size of neutral main feeder: 600,000 c.m.

See tables E 310.12 through E 310.15, notes 8 and 12.

Example No. 5. Calculation of Neutral Feeder (See E 220.04(5))

The following example illustrates the method of calculating size of neutral feeder for the computed load of a 5-wire, 2-phase system, where it is desired to modify the load in accordance with provisions of E 220.04.

An installation consisting of a computed load of 250 amperes connected between neutral feeder and each ungrounded feeder.

Neutral Feeder (maximum unbalance of load 250 amp. \times 140% = 350 amperes):

200 amperes (first) at 100% = 200 amperes

150 amperes (excess) at 70% = 105 amperes

Computed load _____305 amperes Size of neutral feeder: 500,000 c.m.

Example No. 6. Maximum Demand for Range Loads

Table E 220.05, column A applies to ranges not over 12 kw. The application of Note 1 to ranges over 12 kw (and not over 21 kw) is illustrated in the following examples:

A. Ranges all of same rating.

Assume 24 ranges each rated 16 kw.

From Column A the maximum demand for 24 ranges of 12 kw rating is 39 kw.

16 kw exceeds 12 kw by 4.

 $5\% \times 4 = 20\%$ (5% increase for each kw in excess of 12).

39 kw \times 20% = 7.8 kw increase.

$$39 + 7.8 = 46.8$$
 kw: value to be used in selection of feeders.

B. Ranges of unequal rating.

Assume 5 ranges each rated 11 kw.

2 ranges each rated 12 kw.

20 ranges each rated 13.5 kw.

3 ranges each rated 18 kw.

 $5 \times 12 = 60$ Use 12 kw for range rated less than 12.

2 imes 12 = 24

 $20\times13.5=270$

 $3 \times 18 = 54$

408 kw

 $408 \div 30 = 13.6$ kw (average to be used for computation) From Column A the demand for 30 ranges of 12 kw rating is 15 + 30 = 45 kw.

13.6 exceeds 12 by 1.6 (use 2.).

 $5\% \times 2 = 10\%$ (5% increase for each kw in excess of 12). 45 kw $\times 10\% = 4.5$ kw increase.

45 + 4.5 = 49.5 kw = value to be used in selection of feeders.

Electrical Code, Volume 2 Register, April, 1964, No. 100

Example No. 7. Ranges on a 3-Phase System

(See E 220.04 (10)√

Thirty ranges rated at 12 kw each are supplied by a 3-phase, 4-wire, 120/208-volt feeder, 10 ranges on each phase.

As there are 20 ranges connected to each ungrounded conductor, the load should be calculated on the basis of 20 ranges (or in case of unbalance, twice the maximum number between any two phase wires) since diversity applies only to the number of ranges connected to adjacent phases and not the total.

The current in any one conductor will be one-half the total watt load of two adjacent phases divided by the line-to-neutral voltage. In this case, 20 ranges, from table E 220.05 will have a total watt load of 35,000 watts for two phases; therefore, the current in the feeder conductor would be:

 $17,500 \div 120 = 146$ amperes.

On a 3-phase basis the load would be:

 $3 \times 17,500 = 52,500$ watts.

and the current in each feeder conductor-

 $\frac{52,500}{208 \times 1.73} = 146 \text{ amperes.}$

Example No. 8. Motors, Conductors, and Overcurrent Protection

(See E 430.022, E 430.024, E 430.032 and E 430.052)

Determine the size of conductors, the motor-running overcurrent protection, the branch circuit protection, and the feeder protection, for one 25-h.p. squirrel-cage induction motor (full-voltage starting), and two 30-h.p. wound-rotor induction motors, on a 440-volt, 3-phase, 60cycle supply.

Conductor Sizes

The full-load current of the 25-h.p. motor is 32 amperes (table E 430.150). A full-load current of 32 amperes \times 1.25 (E 430.022)/ requires a No. 8, Type R, rubber-covered conductor (table E 310.12). The full-load current of the 30-h.p. motor is 39 amperes (table E 430.150). A full-load current of 39 amperes \times 1.25 (E 430.022)/ requires a No. 6, Type R, rubber-covered conductor (table E 310.12).

The feeder conductor capacity will be 125 per cent of 39, plus 39, plus 32, or 120 amperes (E 430.024). In accordance with table E 310.12, this would require a No. 0, Type R, rubber-covered feeder.

Note: For Type R conductors run open in air, or for conductors with insulations other than Type R, see tables E 310.12 through E 310.15.

Overcurrent Protection

Running. The 25-h.p. motor, with full-load current of 32 amperes, must have running overcurrent protection of not over 40 amperes (Columns 2 and 3, table E 430.146). The 30-h.p. motor with full-load current of 39 amperes must have running overcurrent protection of not over 50 amperes (Columns 2 and 3, table E 430.146)?

> Electrical Code, Volume 2 Register, April, 1964, No. 100

Branch Circuit. The branch circuit of the 25-h.p. motor must have branch-circuit overcurrent protection of not over 100 amperes (Column 4, table E 430.146). The branch circuit of the 30-h.p. motor must have branch-circuit overcurrent protection of not over 60 amperes (Column 7, table E 430.146).

Feeder Circuit. The rating of the branch-circuit fuse for a 25-h.p. squirrel-cage motor is 300 per cent of 32 amperes, or 96 amperes, which necessitates the use of a 100 ampere standard size fuse (table E 430.153); and for a 30-h.p. wound-rotor motor is 150 per cent of 39 amperes, or 59 amperes (table E 430.153). The rating of the feeder fuse is, therefore, 100 plus 39 plus 39 which equals 178 amperes, and a 200 ampere fuse is the maximum size which may be used (see E 430.062).

The setting of a motor-branch-circuit circuit-breaker for a 25-h.p. squirrel-cage motor is 250 per cent of 32 amperes or 80 amperes (table E 430.153); for a 30-h.p. wound-rotor motor is 150 per cent of 39 amperes or 59 amperes (table E 430.153). The maximum setting of a feeder circuit-breaker is 80 + 39 + 39 = 158 amperes (see E 430.062).

an Anna an