CHAPTER NR 274

NONFERROUS METALS MANUFACTURING

NR 274.01 NR 274.02	Purpose Applicability	NR 274.10	Effluent limitations, best prac- ticable treatment
NR 274.02	Definitions	NR 274.11	
	Compliance with effluent limi-	INR 274.11	available treatment
	tations and standards	NR 274.12	Standards of performance
NR 274.05	Modification of effluent limi- tations	NR 274.13	Pretreatment standards for new sources
NR 274.06	Application of effluent limita- tions and standards	NR 274.14	Pretreatment standards for existing sources
NR 274.07	Discharges from impound- ments		-

NR 274.01 Purpose. The purpose of this chapter is to establish effluent limitations, standards of performance, and pretreatment standards for discharges of process wastes from the nonferrous metals manufacturing category of point sources and subcategories thereof.

Note: The authority for promulgation of this chapter is set forth in Wis. Adm. Code chapter NR 205.

History: Cr. Register, June, 1976, No. 246, eff. 7-1-76.

NR 274.02 Applicability. The effluent limitations, standards of performance, pretreatment standards, and other provisions in this chapter are applicable to pollutants or pollutant properties in discharges of process waste resulting from manufacture of the following subcategories.

(1) BAUXITE REFINING. This subcategory covers the process of converting bauxite ore containing alumina monohydrate or trihydrate to alumina by the Bayer process or the combination process.

(2) PRIMARY ALUMINUM SMELTING. This subcategory covers the process of converting alumina to aluminum by the Hall-Heroult process.

(3) SECONDARY ALUMINUM SMELTING. This subcategory covers the processes of:

(a) Secondary aluminum smelting where aluminum fluoride or chlorine is used in the magnesium removed process; and

(b) Producing metallic aluminum alloys by the recovery, processing, and resmelting of aluminum scrap.

(4) PRIMARY COPPER SMELTING. This subcategory covers the process of primary smelting and onsite refining of copper. It does not include recovery of copper from ore by hydrometallurgical methods.

(5) PRIMARY COPPER REFINING. This subcategory covers the process of primary refining of copper on a site other than with primary smelting of copper.

(6) SECONDARY COPPER. This subcategory covers the reprocessing of new and used copper scrap and residues to produce copper and copper alloys.

309

WISCONSIN ADMINISTRATIVE CODE

(7) PRIMARY LEAD. This subcategory covers the process of lead productions at primary lead smelters and refineries. It does not include primary lead refineries not located onsite with a primary lead smelter.

(8) PRIMARY ZINC. This subcategory covers the process of producing primary zinc by either electrolytic or pyrolytic means.

History: Cr. Register, June, 1976, No. 246, eff. 7-1-76.

NR 274.03 Definitions. The following definitions are applicable to terms used in this chapter. Definitions of other terms and meanings of abbreviations are set forth in Wis. Adm. Code chapter NR 205.

(1) "Product" means as appropriate;

(a) Alumina produced from bauxite,

(b) Hot aluminum metal produced in primary or secondary refining,

(c) Electrolytically refined copper in subcategory (5),

(d) Lead bullion in subcategory (6), and

(e) Copper or zinc metal.

(2) "Net evaporation" means that the evaporation rate exceeds the precipitation rate during a one year period.

(3) "Net precipitation" means that the precipitation rate exceeds the evaporation rate during a one year period.

(4) "Pond water surface area" means the water area at the average operating level for the month but not less than one third of the water area at maximum capacity.

(5) "Within the impoundment" means:

(a) For impoundments constructed prior to January 27, 1975, and those constructed for facilities in subcategory (1); within the water surface area at maximum capacity plus that portion, not to exceed 30 percent of such water surface area, of the surface area of the inside and outside slopes of the impoundment dam and extending to any immediately adjacent seepage ditch from which rain water is returned to the impoundment, and

(b) For new impoundments; other than constructed for facilities in subcategory (1); the water surface area at maximum capacity.

History: Cr. Register, June, 1976, No. 246, eff. 7-1-76.

NR 274.04 Compliance with effluent limitations and standards. Discharge of pollutants from facilities subject to the provisions of this chapter shall not exceed, as appropriate:

(1) By July 1, 1977 effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available;

(2) By July 1, 1977 pretreatment standards for existing discharges to publicly owned treatment works;

Register, June, 1976, No. 246 Environmental Protection

310

(3) By July 1, 1983 effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable;

(4) Standards of performance for new sources; or

(5) Pretreatment standards for new sources discharging to publicly owned treatment works.

History: Cr. Register, June, 1976, No. 246, eff. 7-1-76.

NR 274.05 Modification of effluent limitations. (1) Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available may be modified in accordance with this section.

(2) An individual discharger or other interested person may submit evidence to the department that factors relating to the equipment or facilities involved, the process applied, or other such factors related to such discharger are fundamentally different from the factors considered in the establishment of the effluent limitations. On the basis of such evidence or other available information the department will make a written determination that such factors are or are not fundamentally different from that facility compared to those specified in the appropriate one of the Development Documents listed in subsection (3) below. If such fundamentally different factors are found to exist, the department shall establish for the discharge effluent limitations in the WPDES permit either more or less stringent than the limitations in this chapter, to the extent dictated by such fundamentally different factors. Such limitations must be approved by EPA which may approve, disapprove, or specify other limitations.

(3) Applicable Development Documents for segments of the nonferrous metals manufacturing category are:

(a) Bauxite refining, EPA 440/1-74-019e, published March, 1974,

(b) Primary Aluminum Smelting, EPA 440/1-74-019d, published March, 1974,

(c) Secondary Aluminum Smelting, EPA 440/1-74-019c, published March, 1974,

(d) Primary Copper Smelting, EPA 440/1-75-032b, published February, 1975,

(e) Secondary Copper, EPA 440/1-75-032c, published February, 1975,

(f) Lead, EPA 440/1-75-032a, published February, 1975, and

(g) Zinc, EPA 440/1-75-032, published February, 1975.

(4) Copies of these Development Documents are available for inspection at the office of the department of natural resources, the secretary of state's office, and the office of the revisor of statutes and may be obtained for personal use from the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20460.

History: Cr. Register, June, 1976, No. 246, eff. 7-1-76.

NR 274.06 Application of effluent limitations and standards. (1) The effluent limitations and standards set forth in this chapter shall be used in accordance with this section to establish the quantity or quality of pollutants or pollutant properties which may be discharged by a point source subject to the provisions of this chapter, except as;

(a) They may be modified in accordance with section NR 274.05,

(b) They may be superseded by more stringent limitations and standards necessary to achieve water quality standards or meet other legal requirements, or

(c) They may be supplemented or superseded by standards or prohibitions for toxic pollutants or by additional limitations for other pollutants required to achieve water quality.

(2) The production basis for application of the limitations and standards set forth in this chapter shall be the daily average of a maximum month in each subcategory subject to the provisions of this chapter.

(3) The effluent limitations and standards set forth in this chapter for subcategories (3) (a) $\stackrel{\vee}{}$ and (3) (b), as defined in section NR 274.02 (3), are applicable respectively to fume scrubbing wastewaters and wet residue milling and metal cooling wastewaters.

History: Cr. Register, June, 1976, No. 246, eff. 7-1-76.

NR 274.07 Discharges from impoundments. (1) A process wastewater impoundment which is designed, constructed and operated so as to contain the precipitation from the 10 year, 24 hour rainfall event for the area in which such impoundment is located may discharge that volume of process wastewater which is equivalent to the volume of precipitation that falls within the impoundment in excess of that attributable to such rainfall event when it occurs.

(2) A process wastewater impoundment which is designed, constructed and operated so as to contain the precipitation from the 25 year, 24 hour rainfall event for the area in which such impoundment is located may discharge that volume of process wastewater which is equivalent to the volume of precipitation that falls within the impoundment in excess of that attributable to such rainfall event when it occurs.

(3) During any calendar month, there may be discharged from a process wastewater impoundment a volume of process wastewater equal to the difference between the precipitation for that month which falls within the impoundment and the evaporation for that month from the pond water surface area. Such discharges except for subcategory $(1)^{\vee}$ shall have a pH within the range of 6.0-9.0 and concentrations of pollutants not to exceed for the appropriate subcategory those in table 2 or the quantities of pollutants set forth in table 3 for point sources located in areas of net precipitation.

(4) The 10 year and 25 year, 24 hour rainfall events for the impoundment location shall be as set forth in Wis. Adm. Code section NR 205.05. \checkmark

History: Cr. Register, June, 1976, No. 246, eff. 7-1-76. Register, June, 1976, No. 246 Environmental Protection

DEPARTMENT OF NATURAL RESOURCES

NR 274.10 Effluent limitations, best practicable treatment. The following effluent limitations for specific subcategories identified in section NR 274.02 establish, except as provided in section NR 274.05, the quantity or quality of pollutants or pollutant properties which may be discharged to surface waters by a facility subject to the provisions of this chapter after application to process wastes of the best practicable control technology currently available.

(1) For subcategory (1) there shall be no discharge except in accordance with section NR 274.07(3).

(2) For subcategories (4), (5), (6), and (7) there shall be no discharge except in accordance with section NR 274.07(1) and (3).

(3) For subcategories (2) and (8), the pH of discharges shall be within the range of 6.0-9.0 and the limitations for other pollutants are set forth in table 1.

History: Cr. Register, June, 1976, No. 246, eff. 7-1-76.

NR 274.11 Effluent limitations, best available treatment. The following effluent limitations for all or specific subcategories identified in section NR 274.02 establish the quantity or quality of pollutants or pollutant properties which may be discharged to surface waters by a facility subject to the provisions of this chapter after application to process wastes of the best available technology economically achievable.

(1) For subcategory (1) there shall be no discharge except in accordance with section NR 274.07 (3) $\sqrt{}$

(2) For subcategories (2) and (8) the pH of discharges shall be within the range of 6.0-9.0 and the limitations for other pollutants are set forth in table 4.

(3) For subcategories (4), (5), (6), and (7) there shall be no discharge except in accordance with section NR 274.07(2) and (3).

(4) For subcategories (3a) and (3b) there shall be no discharge.

History: Cr. Register, June, 1976, No. 246, eff. 7-1-76.

NR 274.12 Standards of performance. The following effluent limitations for specific subcategories identified in section NR 274.02 \checkmark establish the quantity or quality of pollutants or pollutant properties which may be discharged to surface waters by a facility which is a new source subject to the provisions of this chapter.

(1) For subcategory (1) there shall be no discharge except in accordance with section NR 274.07(3).

(2) For subcategory (2) discharges shall be within the pH range of. 6.0 to 9.0, the 30-day average limitations for suspended solids and fluoride shall be respectively .05 and .025 lbs/1000 lbs. or kg/1000 kg. of product, and the daily maximum limitations for suspended solids and fluoride shall be twice the 30-day average limitations.

(3) For subcategory (3) there shall be no discharge of process wastes to surface waters unless variation from this standard is determined to be necessary for facilities using chlorine for magnesium removal after consideration of the cost of achieving effluent reduction

> Register, June, 1976, No. 246 Environmental Protection

WISCONSIN ADMINISTRATIVE CODE

and any non-water quality environmental impact and energy requirements. Such variation shall not exceed the limitations of section NR 274.10 (4)^{ℓ} for subcategory (3a).

(4) For subcategories (4), (5), (6), and (7) there shall be no discharge except in accordance with section NR 274.07(2) and (3).

(5) For subcategory (8) the limitations shall be as set forth in section NR 274.11(2).

History: Cr. Register, June, 1976, No. 246, eff. 7-1-76.

NR 274.13 Pretreatment standards for new sources. The pretreatment standards for discharges to publicly owned treatment works from new sources subject to the provisions of this chapter shall be as set forth in Wis. Adm. Code chapter NR 211? In addition the limitations for incompatible pollutants for specific subcategories shall be those set forth in table 5. Wastewaters from such new sources may not be discharged to publicly owned treatment works except in compliance with this section.

History: Cr. Register, June, 1976, No. 246, eff. 7-1-76.

NR 274.14 Pretreatment standards for existing sources. The pretreatment standards for discharges to publicly owned treatment works from existing sources subject to the provisions of this chapter shall be as set forth in Wis. Adm. Code chapter NR 211. In addition the limitations for incompatible pollutants for specific subcategories shall be those set forth in table 5. Wastewaters from such new sources may not be discharged to publicly owned treatment works except in compliance with this section.

		Table 1		
	BPT E	ffluent Limitat	ions	
Subcategory	(2)	(3a)	(3b)	(8)
Parameter			in a sate	trans and the
Suspended Solids	1.5	175	1.5	0.21
Aluminum			1.0	
Ammonia (as N)			0.01	
Arsenic				0.0008
Cadmium				0.004
Copper			0.003	
Fluoride	1.0		0.4	
Selenium				0.04
Zinc				0.04
COD		6.5	1.0	
	and the second second second	and the second sec		and the second sec

Note: The table sets forth 30-day average limitations in lbs/1000 lbs. or kg/1000 kg. of magnesium recovered for subcategory (3a) and of product for subcategory (3b) and no daily maximum limitations are applicable. For the other subcategories, the table sets forth 30-day average limitations in lbs/1000 lbs. or kg/1000 kg. of product and daily maximum limitations are two times the 30-day average limitations.

		Table 2		
Effluen	t Limitations for I	Discharges from	n Impoundment	s (1)
Subcategory	(4)	(5)	(6)	(7)
Parameter				
Suspended Solids	25	25	25	25
Arsenic	10	10		
Cadmium	0.5			0.5
Copper	0.25	0.25	0.25	
Lead	0.5			0.5
Oil and Grease		10	10	
Selenium	5	5		
Zinc	5	5	5	5
Note: (1) 30-day aver	age limitations ar	e set forth in	this table in mg	/1. Daily ma

Note: (1) 30-day average limitations are set forth in this table in mg/1. Daily maximum limitations are twice the daily average.

Register, June, 1976, No. 246 Environmental Protection

314

DEPARTMENT OF NATURAL RESOURCES 314-1

Table 3

Efflu	Effluent Limitations for Discharges from Impoundments in Areas of Net Precipitation (1)			
Impound				
Subcategory	(5)	(7)		
Parameter Suspended Solids	0.05	0.021		
Arsenic	0.02			
Cadmium		0.0004		
Copper	0.0005			
Lead		0.0004		
Oil and Grease	0.02			
Selenium	0.01			
Zinc	0.01	0.004		
BT / // TROM / 11 1/ //	1 6 11 6 00 1	1 11 (1000 11		

Note (1): Effluent limitations are set forth for 30-day average in lbs/1000 lbs. or kg/1000 kg. of product. Daily maximum limitations are twice the limits shown.

(2) Limitations for subcategory (5) for best available technology and standards of performance for new sources are 1/10 of the values in the table.

	Table 4 BAT Effluent Limitations				
Subcategory	(2)	(8)			
Parameter					
Suspended Solids	0.1	0.14			
Fluoride	0.05				
Arsenic		0.00054			
Cadmium		0.0027			
Selenium		0.027			
Zinc		0.027			
N7 · · · ·	N N N N N N (4000 N				

Note: 30-day average limitations in lbs/1000 lbs. or kg/1000 kg. of product are set forth in this table. Daily maximum limitations are twice the values shown.

Table 5 Pretreatment Standards for New and Existing Sources 30-day Average Limitations						
Subcategory	4N	4E	5	6	7	8
Parameter						
Oil and Grease		0.02	0.02	100		
Arsenic	10	0.02	0.02			0.0008
Cadmium	0.5				0.0004	0.0004
Copper	0.25	0.0005	0.0005	0.25		
Lead	0.5				0.0004	
Selenium	5	0.01	0.01			0.04
Zinc	5	0.01	0.01	5	0.004	0.04
Limitations for	subcategories	4N (for new	sources)	and 6 are i	n mg/1. L	imitations

Limitations for subcategories 4N (for new sources) and 6 are in mg/1. Limitations for subcategories 4E (for existing sources), 5, 7, and 8 are in lbs/1000 lbs. or kg/1000 kg, of product. Limitations for subcategories 5-8 are for both new and existing sources. For subcategories 4E, 5, 7, and 8 daily maximum limitations are twice the limitations for the table.

History: Cr. Register, June, 1976, No. 246, eff. 7-1-76.

Register, June, 1976, No. 246 Environmental Protection