Clearinghouse Rule 96-077

16-071

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Tommy G. Thompson, Governor George E. Meyer, Secretary Box 7921 101 South Webster Street Madison, Wisconsin 53707-7921 TELEPHONE 608-266-2621 FAX 608-267-3579 TDD 608-267-6897

STATE OF WISCONSIN

(SEAL)

DEPARTMENT OF NATURAL RESOURCES

SS

)

)

TO ALL TO WHOM THESE PRESENTS SHALL COME, GREETINGS:

I, George E. Meyer, Secretary of the Department of Natural Resources and custodian of the official records of said Department, do hereby certify that the annexed copy of Natural Resources Board Order No. WW-21-96 was duly approved and adopted by this Department on October 23, 1996. I further certify that said copy has been compared by me with the original on file in this Department and that the same is a true copy thereof, and of the whole of such original.

IN TESTIMONY WHEREOF, I have hereunto set my hand and affixed the official seal of the Department at the Natural Resources Building in the City of Madison, this <u>Definition</u> day of December, 1996

George E. Mever, Secreta

4-1-97

ORDER OF THE STATE OF WISCONSIN NATURAL RESOURCES BOARD REPEALING AND RECREATING RULES

The Wisconsin Natural Resources Board proposes an order to repeal and recreate NR 235 relating to the regulation of effluent limitations and pretreatment standards for the organic chemicals, plastics, and synthetic fibers industry.

WW-21-96

Analysis Prepared by the Department of Natural Resources

Statutory authority: ss. 147.035(1), 147.06(1), 147.07(1), and 227.11(2)(a), Stats. Statutes interpreted: ss. 147.035, 147.04, 147.06, and 147.07, Stats.

The Federal Water Pollution Control Act amendments of 1972 established a comprehensive program to "restore and maintain the chemical, physical and biological integrity of the Nation's waters" (section 101(a)). To implement the act, the U.S. Environmental Protection Agency issues effluent limitations, pretreatment standards, and new source performance standards for industrial wastewater discharges. The Clean Water Act of 1977 expanded the federal pollution control program by setting different types of effluent limitations: "best practicable technology" (BPT), "best available technology" (BAT), "best conventional technology" (BCT), "new source performance standards" (NSPS), "pretreatment standards for existing sources" (PSES), and "pretreatment standards for new sources" (PSNS). The Clean Water Act stressed control of toxic pollutants, including 65 "priority" pollutants and classes of pollutants from 21 major industries.

The Wisconsin Department of Natural Resources instituted the Wisconsin pollutant discharge elimination system in 1976. This system includes regulating discharges from various industries. The Wisconsin Department of Natural Resources is repealing and recreating ch. NR 235, Wis. Adm. Code, to regulate the organic chemicals, plastics, and synthetic fibers industry. The provisions of this chapter are based upon the U.S. Environmental Protection Agency's regulations in 40 C.F.R. Part 414.

The purpose of this rule is to specify effluent limitations for BPT, BAT, and NSPS for the direct discharge of pollutants to waters of the state and to establish pretreatment standards for the introduction of pollutants into publicly owned treatment works. The effect of the recreation of ch. NR 235, Wis. Adm. Code, will be to establish state standards and limitations for industrial wastewater discharges from the organic chemicals, plastics, and synthetic fibers industry. The Code will reflect changes made by the U.S. Environmental Protection Agency under authority of sections 301, 304, 306, 307, 308, and 501 of the Clean Water Act.

The organic chemicals, plastics, and synthetic fibers industry is large, diverse, and highly complex. The fundamental starting materials for this industry are primarily petroleum and natural gas, but some products are derived from coal. The industry is characterized by a wide mix of products and operations. Product mix often changes on a weekly or even daily basis. Some products are manufactured by different processes. Some processes, with slight changes in operating conditions, result in different products. In many cases, one facility's product is another plant's raw material. An exceptionally wide variety of pollutants are found in this industry's wastewaters because of the variety and complexity of raw materials, processes, and products. Pollutant formation is dependent upon raw material and process chemistry. The chemical reactions used by this industry almost always result in a mixture of unreacted raw materials, products, and byproducts. The substances with no commercial value appear in the process wastewater, as air emissions, or as chemical wastes.

Three federal documents form the basis for 40 CFR Part 414 and ch. NR 235: (1) development document for effluent limitations guidelines and standards for the organic chemicals, plastics, and synthetic fibers point source category, volume I, (USEPA, Washington, D.C., EPA 440-1-87-009, October, 1987); and (2) development document for effluent limitations guidelines and standards for the organic chemicals, plastics, and synthetic fibers point source category, volume II, (USEPA, Washington, D.C., EPA 440-1-87-009, October, 1987); and (3) supplement to the development document for effluent limitations guidelines and new source performance standards for the organic chemicals, plastics, and synthetic fibers point source category, (USEPA, Washington, D.C., EPA 821-R-93-007, May, 1993). Copies of these documents are available for inspection at the central office of the Wisconsin Department of Natural Resources, 101 South Webster Street, Madison, and may be obtained from the National Technical Information Service (NTIS), Springfield, Virginia 22161, (703) 487-4600.

This rule is identical to 40 C.F.R. 414 for purposes of s. 227.14(1m)(a), Stats. However, changes have been made in the text of the federal regulation to make the rule useful to Wisconsin citizens, industry, and regulating authorities. These changes are consistent with the current state regulatory framework and reflect the conventions of state rule drafting.

Where possible, Wisconsin Administrative Code references were substituted in the text for references to the Code of Federal Regulations. Citations in the text to the Code of Federal Regulations may be cross-referenced to corresponding sections of the Wisconsin Administrative Code in the table which has been added at the end of the rule. Definitions for "direct discharge", "existing source", "indirect discharge", "new source", "OCPSF" and "SIC" have been added to the general definitions section in the state rule. As suggested by the administrative rules procedures manual, a purpose section has been added. A compliance dates section also has been added.

SECTION 1. Chapter NR 235 is repealed and recreated to read:

Chapter NR 235

Organic Chemicals, Plastics, and Synthetic Fibers

а ул у а

·. ·

- -

 Subchapter I - General Provisions NR 235.01 Purpose Applicability, Applicability, Beinritons Subchapter II - Rayon Fibers Subchapter II - Char Fibers Subchapter III - Other Fibers Subchapter IV - Thermoplastic Resins NR 235.23 Pretreatment standards for existing sources (PSES). NR 235.30 Appl	organic chemicars, prasties, and synchetic fibers	
 NR 235.10 Applicability, description of the rayon fibers subcategory. NR 235.11 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BAT). NR 235.12 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.13 New source performance standards (NSPS). NR 235.14 Pretreatment standards for existing sources (PSES). NR 235.15 Pretreatment standards for existing sources (PSES). NR 235.20 Applicability; description of the other fibers subcategory. NR 235.21 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology commically available (BAT). NR 235.22 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology commically achievable (BAT). NR 235.23 New source performance standards (NSPS). NR 235.24 Pretreatment standards for existing sources (PSES). NR 235.25 Pretreatment standards for new sources (PSES). NR 235.30 Applicability; description of the thermoplastic resins subcategory. NR 235.31 Beffluent limitations representing the degree of effluent reduction attainable by the application of best available technology commically achievable (BAT). NR 235.31 Beffluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BFT). NR 235.31 Beffluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.32 Beffluent limitations representing the degree of effluent reduction	NR 235.01 Purpose NR 235.02 Applicability NR 235.03 Definitions	All M
 NR 235.12 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.13 New source performance standards (NSPS). NR 235.14 Pretreatment standards for existing sources (PSES). NR 235.15 Pretreatment standards for new sources (PSNS). Subchapter III - Other Fibers NR 235.21 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.22 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.23 New source performance standards (NSPS). NR 235.24 Pretreatment standards for existing sources (PSES). NR 235.25 Pretreatment standards for new sources (PSNS). Subchapter IV - Thermoplastic Resins NR 235.30 Applicability; description of the thermoplastic resins subcategory. NR 235.31 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.31 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.33 Pretreatment standards for existing sources (PSES). NR 235.34 Pretreatment standards for existing sources (PSES). NR 235.35 Pretreatment standards for existing sources (PSES). NR 235.34 Pretreatment standards for existing sources (PSES). NR 235.35 Pretreatment standards for existing sources (PSES). NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree	NR 235.10 Applicability; description of the rayon fibers subcategor NR 235.11 Effluent limitations representing the degree of effluent attainable by the application of the best practicable cor	reduction
 NR 235.14 Pretreatment standards for existing sources (PSES). NR 235.15 Pretreatment standards for new sources (PSNS). Subchapter III - Other Fibers NR 235.20 Applicability; description of the other fibers subcategory. NR 235.21 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.22 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.23 New source performance standards (NSPS). NR 235.24 Pretreatment standards for existing sources (PSES). NR 235.25 Pretreatment standards for new sources (PSES). NR 235.30 Applicability; description of the thermoplastic resins subcategory. NR 235.31 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.32 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.33 Mew source performance standards (NSPS). NR 235.34 Pretreatment standards for new sources (PSES). NR 235.35 Pretreatment standards for new sources (PSES). NR 235.36 Pretreatment standards for new sources (PSES). NR 235.37 Pretreatment standards for new sources (PSES). NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by	NR 235.12 Effluent limitations representing the degree of effluent attainable by the application of best available technolog economically achievable (BAT).	
 NR 235.20 Applicability; description of the other fibers subcategory. NR 235.21 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.22 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.23 New source performance standards (NSPS). NR 235.24 Pretreatment standards for axisting sources (PSES). NR 235.25 Pretreatment standards for new sources (PSNS). Subchapter IV - Thermoplastic Resins NR 235.31 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.32 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.34 Pretreatment standards for existing sources (PSES). NR 235.35 Pretreatment standards for existing sources (PSES). NR 235.34 Pretreatment standards for existing sources (PSES). NR 235.35 Pretreatment standards for new sources (PSES). NR 235.36 Pretreatment standards for new sources (PSNS). Subchapter V - Thermosetting Resins NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent standards for new sources (PSNS). Subchapter V - Thermosetting Resins NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent limitations repr	NR 235.14 Pretreatment standards for existing sources (PSES).	Tana ang ka
 NR 235.20 Applicability; description of the other fibers subcategory. NR 235.21 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.22 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.23 New source performance standards (NSPS). NR 235.24 Pretreatment standards for axisting sources (PSES). NR 235.25 Pretreatment standards for new sources (PSNS). Subchapter IV - Thermoplastic Resins NR 235.31 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.32 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.34 Pretreatment standards for existing sources (PSES). NR 235.35 Pretreatment standards for existing sources (PSES). NR 235.34 Pretreatment standards for existing sources (PSES). NR 235.35 Pretreatment standards for new sources (PSES). NR 235.36 Pretreatment standards for new sources (PSNS). Subchapter V - Thermosetting Resins NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent standards for new sources (PSNS). Subchapter V - Thermosetting Resins NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent limitations repr	Subchapter III - Other Fibers	
 attainable by the application of best available technology economically achievable (BAT). NR 235.23 New source performance standards (NSPS). NR 235.24 Pretreatment standards for existing sources (PSES). NR 235.25 Pretreatment standards for new sources (PSNS). Subchapter IV - Thermoplastic Resins NR 235.30 Applicability; description of the thermoplastic resins subcategory. NR 235.31 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.32 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.33 New source performance standards (NSPS). NR 235.34 Pretreatment standards for existing sources (PSES). NR 235.35 Pretreatment standards for new sources (PSES). NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the thermosetting resins NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.43 New source performance standards (NSPS). NR 235.44 Pretreatment standards for existing sources (PSES). 	NR 235.20 Applicability; description of the other fibers subcategor NR 235.21 Effluent limitations representing the degree of effluent attainable by the application of the best practicable con technology currently available (BPT).	reduction trol
 NR 235.23 New source performance standards (NSPS). NR 235.24 Pretreatment standards for existing sources (PSES). NR 235.25 Pretreatment standards for new sources (PSNS). Subchapter IV - Thermoplastic Resins NR 235.30 Applicability; description of the thermoplastic resins subcategory. NR 235.31 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.33 New source performance standards (NSPS). NR 235.34 Pretreatment standards for existing sources (PSES). NR 235.35 Pretreatment standards for existing sources (PSES). NR 235.36 Pretreatment standards for new sources (PSES). NR 235.37 Pretreatment standards for new sources (PSES). NR 235.38 Pretreatment standards for new sources (PSES). NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology currently available (BPT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology currently available (BPT). NR 235.43 New source performance standards (NSPS). NR 235.44 Pretreatment standards for existing sources (PSES). 	attainable by the application of best available technolog	
 NR 235.30 Applicability; description of the thermoplastic resins subcategory. NR 235.31 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.32 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.33 New source performance standards (NSPS). NR 235.34 Pretreatment standards for existing sources (PSES). NR 235.35 Pretreatment standards for new sources (PSNS). Subchapter V - Thermosetting Resins NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.43 New source performance standards (NSPS). NR 235.44 Pretreatment standards for existing sources (PSES). 	NR 235.24 Pretreatment standards for existing sources (PSES).	
 NR 235.30 Applicability; description of the thermoplastic resins subcategory. NR 235.31 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.32 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.33 New source performance standards (NSPS). NR 235.34 Pretreatment standards for existing sources (PSES). NR 235.35 Pretreatment standards for new sources (PSNS). Subchapter V - Thermosetting Resins NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.43 New source performance standards (NSPS). NR 235.44 Pretreatment standards for existing sources (PSES). 	Cubabanton IV - Thormonlastic Desing	
 NR 235.31 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.32 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.33 New source performance standards (NSPS). NR 235.34 Pretreatment standards for existing sources (PSES). NR 235.35 Pretreatment standards for new sources (PSNS). Subchapter V - Thermosetting Resins NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology considered (BAT). NR 235.43 New source performance standards (NSPS). NR 235.44 Pretreatment standards for existing sources (PSES). 	NR 235.30 Applicability; description of the thermoplastic resins	
 NR 235.32 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.33 New source performance standards (NSPS). NR 235.34 Pretreatment standards for existing sources (PSES). NR 235.35 Pretreatment standards for new sources (PSNS). Subchapter V - Thermosetting Resins NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.43 New source performance standards (NSPS). NR 235.44 Pretreatment standards for existing sources (PSES). 	attainable by the application of the best practicable con	
NR 235.33 New source performance standards (NSPS). NR 235.34 Pretreatment standards for existing sources (PSES). NR 235.35 Pretreatment standards for new sources (PSNS). Subchapter V - Thermosetting Resins NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.43 New source performance standards (NSPS). NR 235.44 Pretreatment standards for existing sources (PSES).	NR 235.32 Effluent limitations representing the degree of effluent attainable by the application of best available technolog	
<pre>Subchapter V - Thermosetting Resins NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.43 New source performance standards (NSPS). NR 235.44 Pretreatment standards for existing sources (PSES).</pre>	NR 235.33 New source performance standards (NSPS). NR 235.34 Pretreatment standards for existing sources (PSES).	
NR 235.40 Applicability; description of the thermosetting resins subcategory. NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.43 New source performance standards (NSPS). NR 235.44 Pretreatment standards for existing sources (PSES).		
NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.43 New source performance standards (NSPS). NR 235.44 Pretreatment standards for existing sources (PSES).	NR 235.40 Applicability; description of the thermosetting resins	
NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT). NR 235.43 New source performance standards (NSPS). NR 235.44 Pretreatment standards for existing sources (PSES).	NR 235.41 Effluent limitations representing the degree of effluent attainable by the application of the best practicable con	reduction trol
NR 235.44 Pretreatment standards for existing sources (PSES).	NR 235.42 Effluent limitations representing the degree of effluent attainable by the application of best available technolog economically achievable (BAT).	
	NR 235.44 Pretreatment standards for existing sources (PSES).	

	r VI - Commodity Organic Chemicals
NR 235.50	Applicability; description of the commodity organic chemicals subcategory.
NR 235.51	
	attainable by the application of the best practicable control
	technology currently available (BPT).
NR 235.52	
NR 255.52	attainable by the application of best available technology
	economically achievable (BAT).
NR 235.53	
NR 235.54	
NR 235.55	Pretreatment standards for new sources (PSNS).
	r VII - Bulk Organic Chemicals
NR 235.60	
	subcategory.
NR 235.61	
	attainable by the application of the best practicable control
	technology currently available (BPT).
NR 235.62	Effluent limitations representing the degree of effluent reduction
	attainable by the application of best available technology
	economically achievable (BAT).
NR 235.63	
NR 235.64	
NR 235.65	
Subchapter	r VIII - Specialty Organic Chemicals
	Applicability; description of the specialty organic chemicals
1111 2001.70	subcategory.
NR 235.71	Effluent limitations representing the degree of effluent reduction
MR 200.71	attainable by the application of the best practicable control
	technology currently available (BPT).
NR 235.72	Effluent limitations representing the degree of effluent reduction
MR 233.72	attainable by the application of best available technology
	economically achievable (BAT).
NR 235.73	New source performance standards (NSPS).
NR 235.73	
	\mathbf{J}
NR 235.75	Pretreatment standards for new sources (PSNS).
مر الدين ما در الم	TV Diwest Dischange Deint Counses What Was And of Dis-
Subchapter	IX - Direct Discharge Point Sources That Use End-of-Pipe
	Biological Treatment
NR 235.80	Applicability; description of the subcategory of direct discharge
	point sources that use end-of-pipe biological treatment.
NR 235.81	Toxic pollutant effluent limitations and standards for direct
	discharge point sources that use end-of-pipe biological treatment.
Subchapter	X - Direct Discharge Point Sources That Do Not Use End-of-Pipe
	Biological Treatment
NR 235.90	Applicability; description of the subcategory of direct discharge
	point sources that do not use end-of-pipe biological treatment.
NR 235.91	Toxic pollutant effluent limitations and standards for direct
	discharge point sources that do not use end-of-pipe biological
1841 - 1846 B	treatment.
	en de mersen en la companya en la companya de la co
Subchapter	XI - Indirect Discharge Point Sources
NR 235.100	
	discharge point sources.
NR 235.101	
	· · · · · · · · · · · · · · · · · · ·

Subchapter I - General Provisions

. .

<u>NR 235.01 PURPOSE.</u> The purpose of this chapter is to establish effluent limitations, performance standards and pretreatment standards for discharges of process wastes from the organic chemicals, plastics and synthetic fibers point source category and its subcategories.

<u>NR 235.02 APPLICABILITY.</u> (1) This chapter applies to process wastewater discharges from all facilities or portions of facilities that manufacture the organic chemicals, plastics and synthetic fibers (OCPSF) products or product groups covered by subchs. II to VIII and are included within the following U.S. department of commerce bureau of the census standard industrial classification (SIC) groups:

(a) SIC 2821 - Plastic materials, synthetic resins and nonvulcanizable elastomers.

- (b) SIC 2823 Cellulosic man-made fibers.
- (c) SIC 2824 Synthetic organic fibers, except cellulosic.
- (d) SIC 2865 Cyclic crudes and intermediates, dyes and organic pigments.
- (e) SIC 2869 Industrial organic chemicals, not elsewhere classified.

(2) This chapter applies to wastewater discharges from OCPSF research and development, pilot plant, technical service and laboratory bench scale operations if these operations are conducted in conjunction with and related to existing OCPSF manufacturing activities at the facility site.

(3) This chapter does not apply to discharges resulting from the manufacture of OCPSF products included in the following SIC subgroups, if a facility has reported under the following subgroups rather than under the SIC groups listed in sub. (1):

(a) SIC 2843085 - bulk surface active agents.

(b) SIC 28914 - s	nthetic resin and rubber adhesives.
(c) Chemicals and	chemical preparations, not elsewhere classified:
1.SIC 2899568 -	sizes, all types.
2. SIC 2899597 -	other industrial chemical specialties, including
en al fan git transgraf.	fluxes, plastic wood preparations and embalming
	fluids. A practicular that the second s
(d) SIC 2911058 -	aromatic hydrocarbons manufactured from purchased
	refinery products.
	aliphatic hydrocarbons manufactured from purchased
a state and the second second	refinery products.

(4) This chapter does not apply to discharges for which a different set of previously promulgated effluent limitations guidelines and standards apply, unless the facility reports OCPSF products under SIC codes 2821, 2865 or 2869, and the facility's OCPSF wastewaters are treated in a separate treatment system or discharged separately to a POTW.

(5) This chapter does not apply to any process wastewater discharges from the manufacture of organic chemical compounds solely by extraction from plant and animal raw materials or by fermentation processes.

(6) This chapter does not apply to wastewater discharges of chromium, copper, lead, nickel or zinc in complexed metal-bearing waste streams listed as follows:

(a) Chromium:

Acid dyes Azo acid dyes, including metallized azo acid dyes Azo dye intermediates from substituted diazonium salts + coupling compounds Metallized azo dyes from azo dye + metal acetate

Organic pigments, miscellaneous lakes and toners Vat dyes (b) Copper: Acid dyes Metallized azo dyes from azo dye + metal acetate Direct dyes Azo direct dyes Disperse dyes Disperse dye coupler from N-substitution of 2-amino-4acetamidoanisole Azo and vat disperse dyes Organic pigments Organic pigment green 7 from copper phthalocyanine Organic pigments from phthalocyanine pigments Organic pigments from copper phthalocyanine (blue crude) Organic pigments, miscellaneous lakes and toners Sulfur dyes Vat dyes

(c) Lead:

Organic pigments, quinacridines Organic pigments, thioindigoids Tetraethyl lead from alkyl halide + sodium-lead alloy Tetramethyl lead from alkyl halide + sodium-lead alloy

(d) Nickel:

Metallized azo dyes from azo dye + metal acetate

(e) Zinc:

Organic pigments from azo pigments by diazotization and coupling

χ.

(7) This chapter does not apply to discharges of cyanide in cyanide bearing waste streams listed in Appendix A if the department or control authority does the following:

(a) Determines that the cyanide limitations and standards are not achievable due to elevated levels of non-amenable cyanide that is not oxidized by chlorine treatment, that result from the unavoidable complexing of cyanide at the process source of the cyanide-bearing waste stream.

(b) Establishes an alternative total cyanide or amenable cyanide limitation that reflects the best available technology economically achievable.

(c) Bases the determination under par. (a) upon a review of relevant engineering, production and sampling and analysis information, including measurements of both total and amenable cyanide in the waste stream.

(d) Analyzes the extent of complexing in the waste stream, based on the foregoing information, and its impact of cyanide treatability in writing and, for direct dischargers, contained in the fact sheet required by 40 CFR 124.8.

(8) Discharge limitations for chromium, copper, lead, nickel and zinc or discharge standards for lead and zinc may be established for waste streams not listed in Appendix A and not otherwise determined to be metal-bearing waste streams if the department or control authority determines that the wastewater metals contamination is due to background levels that are not reasonably avoidable from sources such as intake water, corrosion of construction materials or contamination of raw materials. The determination shall be based upon a review of relevant facility operating conditions, process chemistry, engineering and sampling and analysis information. An analysis of the sources and levels of the metals, based on the foregoing information, shall be in writing as follows:

(a) For direct dischargers:

1. The analysis shall be contained in the fact sheet required by 40 CFR 124.8.

2. The department may establish limitations for chromium, copper, lead, nickel and zinc for non-metal-bearing waste streams between the lowest level which the permit writer determines based on professional judgment can be reliably measured and the concentrations of the metals present in the waste streams, but not to exceed the applicable limitations contained in ss. NR 235.81 and 235.91.

3. The applicable limitations for zinc which may not be exceeded are those appearing in the tables in ss. NR 235.81 and 235.91, not the alternative limitations listed in footnote 2 to each of these tables.

(b) For indirect dischargers:

1. The control authority may establish standards for lead and zinc for non-"metal-bearing waste streams" between the lowest level which the control authority determines based on best professional judgment can be reliably measured and the concentration of the metals present in the waste streams, but not to exceed the applicable standards contained in s. NR 235.101.

2. The applicable standards for zinc which may not be exceeded are those appearing in the table in s. NR 235.101 and not the alternative standards in footnote 2 to this table.

(c) The limitations and standards for individual dischargers shall be set on a mass basis by multiplying the concentration allowance established by the department or control authority by the process wastewater flow from the individual waste streams for which incidental metals have been found to be present.

(9) Any existing or new source direct discharge point source subject to 2 or more of subchs. II through VIII shall achieve BOD_5 and TSS discharges not exceeding the quantity or mass determined by multiplying the total OCPSF process wastewater flow subject to subchs. II to VIII times the following OCPSF production-proportioned concentration: For a specific facility, w_X is the proportion of the facility's total OCPSF production in subcategory X. Then the facility-specific production-proportioned concentration limitations are given by:

VIII Plant BOD₅ Limit = Σ (w_X) (BOD₅ Limit_X) X=II

and

VIII
Plant TSS Limit =
$$\Sigma$$
 (w_X) (TSS Limit_X)
X=II

The "BOD₅ Limit_x" and "TSS Limit_x" are the respective subcategorical BOD₅ and the TSS maximum for any one day or maximum for monthly average limitations.

<u>NR 235.03 DEFINITIONS.</u> In addition to the definitions in ss. NR 205.03, 205.04 and 211.03, the following definitions apply to the terms used in this chapter:

(1) "Direct discharge" means the introduction of pollutants into waters of the state.

(2) "Existing source" means any point source, except a new source as defined in sub. (3), from which pollutants are or may be discharged either to waters of the state or into a publicly owned treatment works.

(3) "Indirect discharge" means the introduction of pollutants into a publicly owned treatment works.

(4) "New source" means any point source for which the commencement of construction occurred after March 21, 1983, and from which pollutants are or may be discharged either to waters of the state or into a publicly owned treatment works.

(5) "OCPSF" means organic chemicals, plastics and synthetic fibers.

(6) "Priority pollutants" means the toxic pollutants listed in s. NR 215.03.

(7) "SIC" means U.S department of commerce bureau of the census standard industrial classification.

<u>NR 235.04 COMPLIANCE DATES.</u> (1) Any existing source subject to this chapter which discharges to waters of the state shall achieve:

(a) The effluent limitations representing BPT by July 1, 1977; and

(b) The effluent limitations representing BAT by July 1, 1984.

(2) Any new source subject to this chapter which discharges to waters of the state shall achieve NSPS at the commencement of discharge.

(3) Any existing source subject to this chapter which introduces process wastewater pollutants into a POTW shall achieve PSES by the date for each parameter as listed in the following tables:

November 5,	1990
Benzene	Hexachloroethane
Carbon tetrachloride	Methyl chloride
Chlorobenzene	Methylene chloride
Chloroethane	Naphthalene
Chloroform	Nitrobenzene
1,2-Dichlorobenzene	2-Nitrophenol
1,3-Dichlorobenzene	4-Nitrophenol
1,4-Dichlorobenzene	Pyrene
1,1-Dichloroethane	Tetrachloroethylene
1,2-Dichloroethane	Toluene
1,1-Dichlorotheylene	Total Cyanide
1,2-trans-Dichloroethylene	Total Lead
1,2-Dichloropropane	Total Zinc
1,3-Dichloropropylene	1,2,4-Trichlorobenzene
4,6-Dinitro-o-cresol	1,1,1-Trichloroethane
Ethylbenzene	1,1,2-Trichloroethane
Hexachlorobenzene	Trichloroethylene
Hexachlorobutadiene	Vinyl Chloride

July 23, 1996

Acenaphthene Anthracene Bis(2-ethylhexyl) phthalate Di-N-butyl phthalate Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene (4) Any new source subject to this chapter which introduces process wastewater pollutants into a POTW shall achieve PSNS at the commencement of discharge.

SUBCHAPTER II - RAYON FIBERS

<u>NR 235.10</u> <u>APPLICABILITY; DESCRIPTION OF THE RAYON FIBERS SUBCATEGORY.</u> This subchapter applies to process wastewater discharges resulting from the manufacture of rayon fiber by the viscose process only.

<u>NR 235.11 EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT</u> <u>REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST PRACTICABLE CONTROL</u> <u>TECHNOLOGY CURRENTLY AVAILABLE (BPT).</u> Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in 2 or more subcategories, any existing point source subject to this subchapter shall achieve the following limitations:

(1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

	BPT	Effluent	Limitations		
		Maximur any 1 (Maximum monthly average	for
Pollutant pollutant		mg/l		mg/l	
BOD₅		64		24	
TSS		130		40	

Rayon Fiber By the Viscose Process

(2) The pH shall be within the range of 6.0 to 9.0 at all times.

NR 235.12 EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE (BAT). (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

<u>NR 235.13 NEW SOURCE PERFORMANCE STANDARDS (NSPS).</u> (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter:

(a) Shall achieve discharges in accordance with s. NR 235.81.

(b) May not exceed the BPT effluent limitations listed in the table in s. NR 235.11 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.11 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

<u>NR 235.14 PRETREATMENT STANDARDS FOR EXISTING SOURCES (PSES)</u>. Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. 211 and achieve discharges in accordance with s. NR 235.101.

<u>NR 235.15 PRETREATMENT STANDARDS FOR NEW SOURCES (PSNS)</u>. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.101.

SUBCHAPTER III - OTHER FIBERS

<u>NR 235.20</u> APPLICABILITY; DESCRIPTION OF THE OTHER FIBERS CATEGORY. This subchapter applies to the process wastewater discharges resulting from the manufacture of products classified under SIC 2823 cellulosic man-made fibers, except rayon, and SIC 2824 synthetic organic fibers including the following fibers and fiber groups. Product groups are indicated with an asterisk.

*Acrylic fibers (85% polyacrylonitrile) *Cellulose acetate fibers *Fluorocarbon (Teflon) fibers *Modacrylic fibers *Nylon 6 fibers Nylon 6 monofilament *Nylon 66 fibers Nylon 66 monofilament *Polyamide fibers (Quiana) *Polyaramid (Kevlar) resin-fibers *Polyaramid (Nomex) resin-fibers *Polyester fibers *Polyethylene fibers *Polyethylene fibers *Polyurethane fibers (Spandex)

NR 235.21 EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE (BPT). Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in 2 or more subcategories, any existing point source subject to this section shall achieve the following limitations:

(1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

BPT	Effluent Limitations		
	Maximum for any 1 day	Maximum monthly average	for
Pollutant or pollutant property	mg/l	mg/l	
BOD ₅	48	18	
TSS [®] and the second	115	36	

Other Fibers

(2) The pH shall be within the range of 6.0 to 9.0 at all times.

<u>NR 235.22 EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT</u> <u>REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST AVAILABLE TECHNOLOGY</u> <u>ECONOMICALLY ACHIEVABLE (BAT).</u> (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

<u>NR 235.23 NEW SOURCE PERFORMANCE STANDARDS (NSPS).</u> (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter: (a) Shall achieve discharges in accordance with s. NR 235.81.

(b) May not exceed the BPT effluent limitations listed in the table in s. NR 235.21 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.21 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

<u>NR 235.24 PRETREATMENT STANDARDS FOR EXISTING SOURCES (PSES)</u>. Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.101.

<u>NR 235.25 PRETREATMENT STANDARDS FOR NEW SOURCES (PSNS)</u>. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.101.

SUBCHAPTER IV - THERMOPLASTIC RESINS

<u>NR 235.30 APPLICABILITY; DESCRIPTION OF THE THERMOPLASTIC RESINS</u> <u>SUBCATEGORY.</u> This subchapter applies to the process wastewater discharges resulting from the manufacture of products classified under SIC 28213 thermoplastic resins including the following resins and resin groups. Product groups are indicated with an asterisk.

Thermoplastic Resins

*Abietic Acid and derivatives
*ABS resins
*ABS-SAN resins
*Acrylate-methacrylate latexes
*Acrylic latex
*Acrylic resins
*Cellulose acetate butyrates
Cellulose acetate resin
*Cellulose acetates
*Cellulose acetate propionates

Polystyrene latex Polystyrene expandable Polystyrene expanded *Polysulfone resins Polyvinyl acetate *Polyvinyl acetate-PVC copolymers *Polyvinyl acetate copolymers *Polyvinyl acetate resins Polyvinyl alcohol resin Polyvinyl chloride

Cellulose nitrate *Ethylene-methacrylic acid copolymers *Ethylene-vinyl acetate copolymers *Fatty acid resins *Fluorocarbon polymers Nylon 11 resin *Nylon 6 to 66 copolymers *Nylon 6 to nylon 11 blends Nylon 6 resin Nylon 612 resin Nylon 66 resin *Nylons *Petroleum hydrocarbon resins *Polyvinyl pyrrolidone copolymers *Poly(alpha)olefins Polyacrylic acid *Polyamides *Polyarylamides *Polybutadiene *Polybutenes Polybutenyl succinic anhydride *Polycarbonates *Polyester resins *Polyester resins, polybutylene terephthalate *Polyester resins, polyoxybenzoate Polyethylene *Polyethylene-ethyl acrylate resins *Polyethylene polyvinyl acetate copolymers HDPE polyethylene resin LDPE polyethylene resin Scrap polyethylene resin Low MW polyethylene resin, wax Latex polyethylene resin Polyethylene resins *Polyethylene resins, compounded *Polyethylene chlorinated *Polyimides *Polypropylene resins Crystal polystyrene Modified crystal polystyrene *Polystyrene copolymers *Polystyrene acrylic latexes Polystyrene impact resins

Chlorinated polyvinyl chloride *Polyvinyl ether-maleic anhydride *Polyvinyl formal resins *Polyvinylacetate-methacrylic copolymers *Polyvinylacetate acrylic copolymers *Polyvinylacetate-2ethylhexylacrylate copolymers Polyvinylidene chloride *Polyvinylidene chloride copolymers *Polyvinylidene-vinyl chloride resins *PVC copolymers, latex acrylates *PVC copolymers, ethylene vinyl chloride *Rosin derivative resins *Rosin modified resins *Rosin resins *SAN resins *Silicone resins *Silicone rubbers *Styrene maleic anhydride resins Styrene polymeric residue *Styrene acrylic copolymer resins *Styrene-acrylonitrile-acrylates copolymers *Styrene-butadiene resins *Stryrene butadiene resins, less than 50% butadiene *Styrene butadiene resins, latex *Styrene-divinyl benzene resins (ion exchange *Styrene-methacrylate terpolymer resins *Styrene-methyl methacrylate copolymers *Styrene, butadiene, vinyl toluene terpolymers *Sulfonated styrene maleic anhydride resins *Unsaturated polyester resins *Vinyl toluene resins *Vinyl toluene-acrylate resins *Vinyl toluene butadiene resins *Vinyl toluene-methacrylate resins *Vinylacetate-N-butylacrylate

copolymers

NR 235.31 EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST PRACTICABLE CONTROL

TECHNOLOGY CURRENTLY AVAILABLE (BPT). Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in 2 or more subcategories, any existing point source subject to this section shall achieve the following limitations:

(1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

BPT Effluent Limitation	
Maximum for any 1 day	Maximum for monthly average
mg/l ty	mg/l
64	24
130	40
	Maximum for any 1 day mg/l ty 64

(2) The pH shall be within the range of 6.0 to 9.0 at all times.

<u>NR 235.32</u> EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT <u>REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST AVAILABLE TECHNOLOGY</u> <u>ECONOMICALLY ACHIEVABLE (BAT).</u> (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

NR 235.33 NEW SOURCE PERFORMANCE STANDARDS (NSPS). (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter:

(a) Shall achieve discharges in accordance with s. NR 235.81.

(b) May not exceed the BPT effluent limitations listed in the table in s. NR 235.31 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.31 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

<u>NR 235.34 PRETREATMENT STANDARDS FOR EXISTING SOURCES (PSES).</u> Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.101. <u>NR 235.35 PRETREATMENT STANDARDS FOR NEW SOURCES (PSNS).</u> Except as provided in s. NR 211.13 any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.101.

SUBCHAPTER V - THERMOSETTING RESINS

<u>NR 235.40 APPLICABILITY; DESCRIPTION OF THE THERMOSETTING RESINS</u> <u>SUBCATEGORY.</u> This subchapter applies to process wastewater discharges resulting from the manufacture of the products classified under SIC 28214 thermosetting resins including the following resins and resin groups. Product groups are indicated with an asterisk.

- *Alkyd resins Dicyanodiamide resin
- *Epoxy resins
- *Fumaric acid polyesters

*Furan resins Glyoxal-urea formaldehyde textile resins

- *Ketone-formaldehyde resins
- *Melamine resins
- *Phenolic resins
- *Polyacetal resins
- Polyacrylamide
- *Polyurethane prepolymers
- *Polyurethane resins
- *Urea formaldehyde resins
- *Urea resins

<u>NR 235.41</u> EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST PRACTICABLE CONTROL <u>TECHNOLOGY CURRENTLY AVAILABLE (BPT)</u>. Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in 2 or more subcategories, any existing point source subject to this section shall achieve the following limitations:

(1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

Thermosetting Resins

· · · · · · · · · · · · · · · · · · ·	BPT Effluent Limitatio	ons
	Maximum for any 1 day	Maximum for monthly average
Pollutant or pollutant proper	mg/l ty	mg/l
BOD ₅	163	61
TSS	216	67

(2) The pH shall be within the range of 6.0 to 9.0 at all times.

NR 235.42 EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE (BAT). (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

<u>NR 235.43 NEW SOURCE PERFORMANCE STANDARDS (NSPS).</u> (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter:

(a) Shall achieve discharges in accordance with s. NR 235.81.(b) May not exceed the BPT effluent limitations listed in the table in

s. NR 235.41 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.41 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

<u>NR 235.44</u> PRETREATMENT STANDARDS FOR EXISTING SOURCES (PSES). Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.101.

<u>NR 235.45 PRETREATMENT STANDARDS FOR NEW SOURCES (PSNS)</u>. Except as provided in s. NR 211.13 any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.101.

SUBCHAPTER VI - COMMODITY ORGANIC CHEMICALS

<u>NR 235.50</u> <u>APPLICABILITY; DESCRIPTION OF THE COMMODITY ORGANIC CHEMICALS</u> <u>SUBCATEGORY.</u> This subchapter applies to the process wastewater discharges resulting from the manufacture of the following SIC 2865 and 2869 commodity organic chemicals and commodity organic chemical groups. Product groups are indicated with an asterisk.

Commodity Organic Chemicals

	the second se
Aliphatic Organic Chemicals	Aromatic Organic Chemicals
Acetaldehyde	Benzene
Acetic acid	Cumene
Acetic anhydride	Dimethyl terephthalate
Acetone	Ethylbenzene
Acrylonitrile	Phenol
	*Pitch tar residues
Adipic acid	
*Butylenes (butenes)	*Pyrolysis gasolines
Cyclohexane	Styrene
Ethanol	Terephthalic acid
Ethylene	Toluene
Ethylene glycol	*Xylenes, mixed
Ethylene oxide	o-Xylene
Formaldehyde	m-Xylene (impure)
Isopropanol	p-Xylene
Methanol	<u>r</u> <u>2</u>
Polyoxypropylene glycol	Halogenated Organic Chemicals
Propylene	natogenated organic chemicars
Propylene oxide	
Vinyl acetate	Vinyl chloride
1,2-Dichloroethane	a far e se an
1,3-Butadiene	

NR 235.51 EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE (BPT). Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in two or more subcategories, any existing point source subject to this section shall achieve the following limitations:

(1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

	BPT	Effluent Limitations	
		Maximum for any 1 day	Maximum for monthly average
Pollutant pollutant		mg/l	mg/l
BOD ₅		80	30
BOD₅ TSS		149	46

Commodity Organic Chemicals

(2) The pH shall be within the range of 6.0 to 9.0 at all times.

<u>NR 235.52</u> EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE (BAT). (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

<u>NR 235.53 NEW SOURCE PERFORMANCE STANDARDS (NSPS).</u> (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter:

(a) Shall achieve discharges in accordance with s. NR 235.81.(b) May not exceed the BPT effluent limitations listed in the table in

s. NR 235.51 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.51 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

<u>NR 235.54</u> PRETREATMENT STANDARDS FOR EXISTING SOURCES (PSES). Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.101.

<u>NR 235.55 PRETREATMENT STANDARDS FOR NEW SOURCES (PSNS)</u>. Except as provided in s. NR 211.13 any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.101.

SUBCHAPTER VII - BULK ORGANIC CHEMICALS

•

<u>NR 235.60</u> APPLICABILITY; DESCRIPTION OF THE BULK ORGANIC CHEMICALS <u>SUBCATEGORY</u>. This subchapter applies to the process wastewater discharges resulting from the manufacture of the following SIC 2865 and 2869 bulk organic chemicals and bulk organic chemical groups. Product groups are indicated with an asterisk.

Bulk Organic Chemicals

(1) Aliphatic Organi	ic Chemicals
*Acetic acid esters	Isophthalic acid
*Acetic acid salts	Isoprene
Acetone cyanohydrin	Isopropyl acetate
Acetylene	Ligninsulfonic acid, calcium salt
Acrylic acid	Maleic anhydride
*Acrylic acid esters	Methacrylic acid
*Alkoxy alkanols	*Methacrylic acid esters
*Alkylates	Methane
*Alpha-olefins	Methyl ethyl ketone
Butane (all forms)	Methyl methacrylate
*C-4 Unsaturated hydrocarbons	Methyl tert-butyl ether
Calcium stearate	Methylisobutyl ketone
Caprolactam	*n-Alkanes
Carboxymethyl cellulose	n-Butyl alcohol
Cellulose acetate butyrates	n-Butylacetate
*Cellulose ethers	n-Butyraldehyde
Cumene hydroperoxide	n-Butyric acid
Cyclohexanol	n-Butyric anhydride
Cyclohexanol, cyclohexanone mixed	*n-Paraffins
Cyclohexanore	n-Propyl acetate
Cyclohexene	n-Propyl alcohol
*C12-C18 Primary alcohols	Nitrilotriacetic acid
*C5 concentrates	Nylon salt
*C9 concentrates	Oxalic acid
Decanol	*Oxo aldehydes-alcohols
Diacetone alcohol	Pentaerythritol
*Dicarboxylic acids salts	Pentane
Diethyl ether	*Pentenes
	*Petroleum sulfonates
Diethylene glycol Diethylene glycol diethyl ether	Pine oil
Diethylene glycol dimethyl ether	Polyoxybutylene glycol
Diethylene glycol monoethyl ether	Polyoxyethylene glycol
Diethylene glycol monomethyl ether	Propane
*Dimer acids	Propionaldehyde
	Propionic acid
Dioxane sufficient	Propylene glycol
Ethane	Sec-butyl alcohol
Ethylene glycol monophenyl ether	Sodium formate
*Miscellaneous ethoxylates	Sorbitol
Ethylene glycol dimethyl ether	
Ethylene glycol monobutyl ether	Stearic acid, calcium salt (wax)
Ethylene glycol monoethyl ether	Tert-Butyl alcohol
Ethylene glycol monomethyl ether	1-Butene
Synthetic glycerine	1-Pentene diel
Glyoxal	1,4-Butanediol
Hexane	Isobutyl acetate
*Hexanes and other C6 hydrocarbons	2-Butene (cis and trans)
Isobutanol	2-Ethyl hexanol
Isobutylene	2-Ethylbutyraldehyde
Isobutyraldehyde	2,2,4-Trimethyl-1,3-pentanediol
Isophorone	

Bulk Organic Chemicals

(2) Amine and Amide Organic Chemicals

2,4-Diaminotoluene *Alkyl amines Aniline Caprolactam, aqueous concentrate Diethanolamine Diphenyl amine *Ethanolamines Ethylamine Ethylenediamine Ethylenediaminetetraacetic acid *Fatty amines Hexamethylene diamine Isopropylamine m-Toluidine Melamine Melamine crystal *Methylamines

```
Methylene dianiline
n-Butylamine
N, N-Diethylaniline
N, N-Dimethylformamide
*Nitroanilines
Polymeric methylene dianiline
Sec-Butylamine
Tert-Butylamine
Toluenediamine (mixture)
*Toluidines
o-Phenylenediamine
2,6-Dimethylaniline
4-(N-Hydroxyethylethylamino)-2-
hydroxyethyl aniline
4,4'-Methylenebis (N,N'-
   dimethyl) - aniline
4,4'-Methylenedianiline
```

Bulk Organic Chemicals

Aromatic Organic Chemicals (3) Alpha-methylstyrene Diisooctyl phthalate *Alkyl benzenes Dimethyl phthalate *Alkyl phenols Dinitrotoluene (mixed) *Alkylbenzene sulfonic acids, salts Ditridecyl phthalate *Aminobenzoic acid (meta and para) m-Cresol Metanilic acid Beta-Naphthalene sulfonic acid Benzenedisulfonic acid Methylenediphenyldiisocyanate Benzoic acid Naphthalene Bis(2-ethylhexyl)phthalate *Naphthas, solvent Nitrobenzene Bisphenol A BTX-benzene, toluene, xylene (mixed) Nitrotoluene Butyl octyl phthalate Nonylphenol Coal tar p-Cresol *Coal tar products (misc.) Phthalic acid Phthalic anhydride Creosote *Cresols, mixed *Tars-pitches Cyanuric acid Tert-Butylphenol Cyclic aromatic sulfonates *Toluene diisocyanates (mixture) Trimellitic acid Dibutyl phthalate Diisobutyl phthalate o-Cresol 1-Tetralol, 1-tetralone mix Diisodecyl phthalate 2,4-Dinitrotoluene

2,6-Dinitrotoluene

Bulk Organic Chemicals

(4)	Halogenated	<u>Orqanic</u>	Chemicals	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
1,4-Phenylenediamine Allyl chloride Benzyl chloride Carbon tetrachloride *Chlorinated paraffi Chlorobenzene *Chlorobenzenes (mix Chlorodifluoroethane Chloroform *Chloromethanes 2-Chloro-5-methylphe cresol) *Chlorophenols Chloroprene Cyanogen chloride	ns, 35-64 PCT ed)		Cyanuric chlor Dichloropropan Epichlorohydri Ethyl chloride *Fluorocarbons Methyl chlorid Methylene chlo Pentachlorophe Phosgene Tetrachloroeth Trichloroethyl Trichlorofluor Vinylidene chl 1,1-Dichloroet 1,1,1-Trichlor 2,4-Dichloroph	e n (Freons) e ride nol ylene ene omethane oride hane oethane

Bulk Organic Chemicals

(5)Other Organic Chemicals

Adiponitrile Carbon disulfide Fatty Nitriles *Organo-tin compounds

*Phosphate esters Tetraethyl lead Tetramethyl lead Urethane prepolymers

EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT NR 235.61

REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE (BPT). Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in 2 or more subcategories, any existing point source subject to this section shall achieve the following limitations:

(1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

	BPT	Effluent Limitations	
		Maximum for any 1 day	Maximum for monthly average
Pollutant pollutant		mg/l	mg/l
BOD5 TSS		92 159	34 49

Bulk Organic Chemicals

The pH level shall be within the range of 6.0 to 9.0 at all times. (2)

NR 235.62 EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE (BAT). (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

<u>NR 235.63 NEW SOURCE PERFORMANCE STANDARDS (NSPS).</u> (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter:

(a) Shall achieve discharges in accordance with s. NR 235.81.(b) May not exceed the BPT effluent limitations listed in the table in

s. 235.61 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.61 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

<u>NR 235.64</u> PRETREATMENT STANDARDS FOR EXISTING SOURCES (PSES). Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.101.

<u>NR 235.65 PRETREATMENT STANDARDS FOR NEW SOURCES (PSNS).</u> Except as provided in s. NR 211.13 any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.101.

SUBCHAPTER VIII - SPECIALTY ORGANIC CHEMICALS

NR 235.70 APPLICABILITY; DESCRIPTION OF THE SPECIALTY ORGANIC CHEMICALS SUBCATEGORY. This subchapter applies to the process wastewater discharges resulting from the manufacture of all SIC 2865 and 2869 organic chemicals and organic chemical groups which are not defined as commodity chemicals in s. NR 235.50 or bulk organic chemicals in s. NR 235.60. NR 235.71 EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST PRACTICABLE CONTROL

TECHNOLOGY CURRENTLY AVAILABLE (BPT). Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in 2 or more subcategories, any existing point source subject to this section shall achieve the following limitations:

(1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

		and the second state of th	
	BPT	Effluent Limitations	
 B. S. Lindstein S. S. S		Maximum for any 1 day	Maximum for monthly average
Pollutant pollutant		mg/l	mg/l
3			45 57

Specialty Organic Chemicals

(2) The pH shall be within the range of 6.0 to 9.0 at all times.

NR 235.72 EFFLUENT LIMITATIONS REPRESENTING THE DEGREE OF EFFLUENT REDUCTION ATTAINABLE BY THE APPLICATION OF THE BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE (BAT). (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

<u>NR 235.73 NEW SOURCE PERFORMANCE STANDARDS (NSPS).</u> (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter:

(a) Shall achieve discharges in accordance with s. NR 235.81.

(b) May not exceed the BPT effluent limitations listed in the table in s. NR 235.71 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.71 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

<u>NR 235.74 PRETREATMENT STANDARDS FOR EXISTING SOURCES (PSES).</u> Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.101. <u>NR 235.75</u> PRETREATMENT STANDARDS FOR NEW SOURCES (PSNS). Except as provided in s. NR 211.13 any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.101.

SUBCHAPTER IX - DIRECT DISCHARGE POINT SOURCES THAT USE END-OF-PIPE BIOLOGICAL TREATMENT

<u>NR 235.80</u> APPLICABILITY; DESCRIPTION OF THE SUBCATEGORY OF DIRECT <u>DISCHARGE POINT SOURCES THAT USE END-OF-PIPE BIOLOGICAL TREATMENT</u>. This subchapter applies to the process wastewater discharges resulting from the manufacture of the OCPSF products and products groups defined by s. NR 235.02 from any point source that uses end-of-pipe biological treatment or installs end-of-pipe biological treatment to comply with BPT effluent limitations.

NR 235.81 TOXIC POLLUTANT EFFLUENT LIMITATIONS AND STANDARDS FOR DIRECT DISCHARGE POINT SOURCES THAT USE END-OF-PIPE BIOLOGICAL TREATMENT. (1) Any point source subject to this subchapter must achieve discharges not exceeding the quantity determined by multiplying the process wastewater flow times the concentrations in the following table.

(2) For chromium, copper, lead, nickel, zinc and total cyanide:

(a) The discharge quantity shall be determined by multiplying the concentrations listed in the following table for these pollutants times the flow from the metal-bearing waste streams for the metals and times the flow from the cyanide bearing waste streams for total cyanide.

(b) The metal-bearing waste streams and cyanide-bearing waste streams are defined as:

1. Those waste streams listed in Appendix A.

2. Any additional OCPSF process wastewater streams identified by the permitting authority on a case-by-case basis as metal or cyanide bearing based upon a determination that such streams contain significant amounts of the pollutants identified above.

(c) Any streams designated under subd. 2 shall be treated independently of other metal or cyanide bearing waste streams unless the permitting authority determines that the combination of such streams, prior to treatment, with the Appendix A waste streams will result in substantial reduction of these pollutants. This determination shall be based upon a review of relevant engineering, production and sampling information.

and the state of the second	and the second secon	and the second
BAT Efflue	nt Limitatic	ns and NSPS ¹
	Maximum for any 1 day	Maximum for monthly average
Pollutant or pollutant property	µg/l	μ g/l .
		the state of the second se
Acenaphthene	59	22
Acenaphthylene	59	22
Acrylonitrile	242	96
Anthracene	. 59	22
Benzene	136	37
Benzo (a) anthracene	59	22
3,4-Benzofluoranthene	61	23
Benzo(k)fluoranthene	59	22
Benzo(a)pyrene	61	23
Bis (2-ethylhexyl) phthalate	279	103
Carbon tetrachloride	38	18
Chlorobenzene	28	15

Sources Using End of Pipe Biological Treatment

Chloroethane	268		104	
Chloroform	46		21	
2-Chlorophenol	98		31	
Chrysene	59		22	
Di-n-butyl phthalate	57		27	
1,2-Dichlorobenzene	163		77	and the second second
1,3-Dicholorbenzene	44	11 - 11 11 - 12	31	
1,4-Dicholorbenzene	28		15	
1,1-Dichloroethane	59	and the second second	22	
1,2-Dichloroethane	211		68	
1,1-Dichloroethylene	25		16	
1,2-trans-Dichloroethyle	ene 54		21	
2,4-Dichlorophenol	112	n an Na Status ann an Status	39	· · · · · · · · ·
1,2-Dichloropropane	230		153	
1,3-Dichloropropylene	44		29	
Diethyl phthalate	203		81	8 - <u>1</u>
2,4-Dimethylphenol	36		18	
Dimethyl phthalate	47		19	
4,6-Dinitro-o-cresol	277	10 C	78	
2,4-Dinitrophenol	123		71	
2,4-Dinitrotoluene	285		113	
2,6-Dinitrotoluene	641	1994 - C.	255	1999 - A.
Ethylbenzene	108		32	
Fluoranthene	68		25	
Fluorene	59		22	
Hexachlorobenzene	28		15	
Hexachlorobutadiene	49	patri stati a	20	
Hexachloroethane	54		21	- P -
Methyl chloride	190		86	
Methylene chloride	89		40	1
Naphthalene	59		22	
Nitrobenzene	68		27	14 No. 14
2-Nitrophenol	69		41	
4-Nitrophenol	124		72	
Phenanthrene	59		22	
Phenol	26	1. J.	15	stantin and an
Pyrene	67		25	
Tetrachloroethylene	56		22	
Toluene	80		26	
Total Chromium	2,770	second second second	1,110	
Total Copper	3,380		1,450	
Total Cyanide	1,200		420	
Total Lead	690		320	
Total Nickel	3,980	na tempera y ante a	1,690	
Total Zinc ²	2,610		1,050	1112
1,2,4-Trichlorobenzene	140		68	
1,1,1-Trichloroethane	54		21	
1,1,2-Trichloroethane	54		21	
Trichloroethylene	54	·	21	
Vinyl Chloride	268		104	i di secondo de la constante de
			× 64.0	n San S

'All units are micrograms per liter.

.

²Total zinc for rayon fiber manufacture that uses the viscose process and acrylic fiber manufacture that uses the zinc chloride/solvent process is 6,796 μ g/l maximum for any one day and 3,325 μ g/l maximum for monthly average. SUBCHAPTER X - DIRECT DISCHARGE POINT SOURCES THAT DO NOT USE END-OF-PIPE BIOLOGICAL TREATMENT

NR 235.90 APPLICABILITY; DESCRIPTION OF THE SUBCATEGORY OF DIRECT DISCHARGE POINT SOURCES THAT DO NOT USE END-OF-PIPE BIOLOGICAL TREATMENT. This subchapter applies to the process wastewater discharges resulting from the manufacture of the OCPSF products and product groups defined by s. NR 235.02 from any point source that does not use end-of-pipe biological treatment and does not install end-of-pipe biological treatment to comply with BPT effluent limitations. • .1

NR 235.91 TOXIC POLLUTANT EFFLUENT LIMITATIONS AND STANDARDS FOR DIRECT

DISCHARGE POINT SOURCES THAT DO NOT USE END-OF-PIPE BIOLOGICAL TREATMENT. (1) Any point source subject to this subchapter must achieve discharges not exceeding the quantity determined by multiplying the process wastewater flow times the concentrations in the following table.

(2) For chromium, copper, lead, nickel, zinc and total cyanide:

(a) The discharge quantity shall be determined by multiplying the concentrations listed in the following table for these pollutants times the flow from the metal-bearing waste streams for the metals and times the flow from the cyanide bearing waste streams for total cyanide.

(b) The metal-bearing waste streams and cyanide-bearing waste streams are defined as:

1. Those waste streams listed in Appendix A.

2. Any additional OCPSF process wastewater streams identified by the permitting authority on a case-by-case basis as metal or cyanide bearing based upon a determination that such streams contain significant amounts of the pollutants identified above.

(c) Any streams designated under subd. 2 shall be treated independently of other metal or cyanide bearing waste streams unless the permitting authority determines that the combination of such streams, prior to treatment, with the Appendix A waste streams will result in substantial reduction of these pollutants. This determination shall be based upon a review of relevant engineering, production and sampling information.

BAT Efflue:	nt Lim	tations and	NSPS ¹
· · · · · · · · · · · · · · · · · · ·	Maxir	num for L day	Maximum for monthly
Pollutant or	µg/l		<u>average</u> μg/l
pollutant property		·	
Acenaphthene	47		19
Acenaphthylene	47		19
Acrylonitrile	232		94
Anthracene	47		19
Benzene	134		57
Benzo (a) anthracene	47		19
3,4-Benzofluoranthene	48		20
Benzo(k)fluoranthene	47	- 4. A	19
Benzo (a) pyrene	48	All Charles and	20
Bis (2-ethylhexyl) phthalate	258		95
Carbon tetrachloride	380	and the second second	142
Chlorobenzene	380		142
Chloroethane	295		110
Chloroform	325		111
Chrysene	47		19
Di-n-butyl phthalate	43		20
1,2-Dichlorobenzene	794		196
1,3-Dichlorobenzene	380		142

Sources Not Using End of Pipe Biological Treatment

1,4-Dichlorobenzene	380		142
1,1-Dichloroethane	59		22
1,2-Dichloroethane	574		180
1,1-Dichloroethylene	60		22
1,2-trans-Dichloroethyl			25
1,2-Dichloropropane	794		196
1,3-Dichloropropylene	794		196
Diethyl phthalate	113	A. A.	46
2,4-Dimethylphenol	47		19
Dimethyl phthalate	47		19
4,6-Dinitro-o-cresol	277		78
2,4-Dinitrophenol	4,291		1,207
Ethylbenzene	380		142
Fluoranthene	54		22
Fluorene	47		19
Hexachlorobenzene	794		196
Hexachlorobutadiene	380		142
Hexachloroethane	794		196
Methyl chloride	295		110
Methylene chloride	170		36
Naphthalene	47		19
Nitrobenzene	6,402		2,237
2-Nitrophenol	231		. 65
4-Nitrophenol	576		162
Phenanthrene	47	and the second second	19
Phenol	47		19
Pyrene	48		20
Tetrachloroethylene	164		52
Toluene	74	e de la composición d	28
Total Chromium	2,770		1,110
Total Copper	3,380		1,450
Total Cyanide	1,200	i i kili a	420
Total Lead	690		320
Total Nickel	3,980		1,690
Total Zinc ²	2,610		1,050
	794		196
1,2,4-Trichlorobenzene	59		22
1,1,1-Trichloroethane	127	a de constantes de la constante	32
1,1,2-Trichloroethane	69		26
Trichloroethylene	172		26 97
Vinyl chloride	1/2		וע

¹All units are micrograms per liter.

•

²Total Zinc for rayon fiber manufacture that uses the viscose process and acrylic fibers manufacture that uses the zinc chloride/solvent process is 6,796 μ g/l maximum for any one day and 3,325 μ g/l maximum for monthly average.

. . .

SUBCHAPTER XI - INDIRECT DISCHARGE POINT SOURCES

<u>NR 235.100</u> <u>APPLICABILITY; DESCRIPTION OF THE SUBCATEGORY OF INDIRECT</u> <u>DISCHARGE POINT SOURCES.</u> This subchapter applies to the process wastewater discharges resulting from the manufacture of the OCPSF products and products groups defined by s. NR 235.02 from any indirect discharge point source.

NR 235.101 TOXIC POLLUTANT STANDARDS FOR INDIRECT DISCHARGE POINT SOURCES. (1) Any point source subject to this subchapter must achieve discharges not exceeding the quantity determined by multiplying the process wastewater flow times the concentrations in the following table.

(2) For chromium, copper, lead, nickel, zinc and total cyanide:

(a) The discharge quantity shall be determined by multiplying the concentrations listed in the following table for these pollutants times the flow from the metal-bearing waste streams for the metals and times the flow from the cyanide bearing waste streams for total cyanide.

(b) The metal-bearing waste streams and cyanide-bearing waste streams are defined as:

1. Those waste streams listed in Appendix A.

2. Any additional OCPSF process wastewater streams identified by the permitting authority on a case-by-case basis as metal or cyanide bearing based upon a determination that such streams contain significant amounts of the pollutants identified above.

(c) Any streams designated under subd. 2 shall be treated independently of other metal or cyanide bearing waste streams unless the permitting authority determines that the combination of such streams, prior to treatment, with the Appendix A waste streams will result in substantial reduction of these pollutants. This determination shall be based upon a review of relevant engineering, production, and sampling information.

PSES and PSNS¹

	Maximum for any 1 day	Maximum for monthly average
Pollutant or	µg/l	μg/l
pollutant property		
Acenaphthene	47	19
Anthracene	47	19
Benzene	134	57
Bis(2-ethylhexyl)phthalate	258	95
Carbon tetrachloride	380	142
Chlorobenzene	380	142
Chloroethane -	295	110
Chloroform	325	111
Di-n-butyl phthalate	43	20
1,2-Dichlorobenzene	794	196
1,3-Dichlorobenzene	380	142
1,4-Dichlorobenzene	380	142
1,1-Dichloroethane	59	22
1,2-Dichloroethane	574	180
1,1-Dichloroethylene	60	22
1,2-trans-Dichloroethylene	66	25
1,2-Dichloropropane	794	196
1,3-Dichloropropylene	794	196
Diethyl phthalate	113	46
Dimethyl phthalate	47	19
4,6-Dinitro-o-cresol	277	78
Ethylbenzene	380	142
Fluoranthene	54	22
Fluorene	47	19

Hexachlorobenzene	794	196	
Hexachlorobutadiene		142	
Hexachlorethane	794	196	
Methyl chloride	295	110	
Methylene chloride	170	36	
Naphthalene	47	19	
Nitrobenzene	6,402	2,237	
2-Nitrophenol	231	65	
4-Nitrophenol	576		
Phenanthrene	47	19	
Pyrene	48	20	
Tetrachloroethylene	164	52	
Toluene	74	28	
Total Cyanide	1,200	420	
Total Lead	690	320	
	2,610	1,050	
1,2,4-Trichlorobenzene	•	196	
		22	
1,1,1-Trichloroethane			
1,1,2-Trichloroethane		32	
Trichloroethylene	69	26	
Vinyl chloride	172	97	

¹All units are micrograms per liter.

²Total zinc for rayon fiber manufacture that uses the viscose process and acrylic fiber manufacture that uses the zinc chloride/solvent process is 6,796 μ g/l maximum for any one day and 3,325 μ g/l maximum monthly average.

APPENDIX A TO CHAPTER NR 235 - NONCOMPLEXED METAL-BEARING WASTE STREAMS AND CYANIDE-BEARING WASTE STREAMS

• -

Product	Process
Produce	FIOCESS
Methylhydroabietate	Esterification of hydroabietic acid (rosin) with methanol
Acrylic acid	Oxidation of propylene via acrolein
N-Butyl alcohol	Hydrogenation of n-butyraldehyde, Oxo process
Cyclohexanone	From phenol via cyclohexanol by hydrogenation
Fatty amines	Batch hydrogenation of fatty nitriles
Heliotropin	Oxidation of isosafrole, chromium catalyst
Isobutanol	Hydrogenation of isobutyraldehyde, Oxo process
Cyclohexyl mercaptan	Cyclohexanol + hydrogen sulfide
Ethyl mercaptan	Ethanol + hydrogen sulfide
Methanol	H.P. synthesis from natural gas via synthetic gas
Oxo alcohols, C7-C11	Carbonation and hydrogenation of C6- C10 olefins
Polyoxypropylene diamine	Polypropylene glycol + ammonia
n-Propyl alcohol	Hydrogenation of propionaldehyde, oxo process
SAN resin -	Suspension polymerization
Styrene	Dehydrogenation of ethylbenzene
Styrene	Dehydration of methyl benzyl alcohol, coproduct of propylene oxide
L-Tetralol, 1-tetralone mix	Oxidation of tetralin (1,2,3,4- tetrahydronaphthalene)
3,3,3-Trifluoropropene	Catalyzed hydrogen fluoride exchange with chlorinated propane
Vinyl toluene	Thermal dehydrogenation of ethyltoluene

Chromium Bearing Waste Streams

Copper Bearing Waste Streams

Product	Process
Methylhydroabietate	Esterfication of hydroabietic acid (rosin) with methanol
Acetaldehyde	Oxidation of ethylene with cupric chloride catalyst
Acetic acid	Catalytic oxidation of butane
Acetone	Dehydrogenation of isopropanol
Acrylamide	Catalytic hydration of acrylonitrile
Acrylic acid	Oxidation of propylene via acrolein
Acrylonitrile	Propylene ammoxidation
Adiptic Acid	Oxidation of cyclohexanol- cyclohexanone mixture
Adipic acid	Oxidation of cyclohexane via cyclohexanol-cyclohexanone mixture
Allynitrile	Allychloride + sodium cyanide
Aniline	Hydrogenation of nitrobenzene
Benzofurans, 2,3 dihydro-2,2- dimethyl-7-benzofuranol	From o-Nitrophenol + methallyl chloride
n-Butyl alcohol	Hydrogenation of n-butyraldehyde, oxo process
1,4 Butanediol	Hydrogenation of 1,4-butynediol
Butryolactone	Dehydrogenation of 1,4-butanediol
Caprolactam action during the second se	From cyclohexane via cyclohexanone and its oxime
Lilian (hydroxydihydrocitronellal)	Hydration and oxidation of citronellol
1,2-Dichloroethane	Oxyhydrochlorination of ethylene
Dialkyldithiocarbamates, metal salts	Dialkylamines + carbon disulfide
2-Ethylhexanol Server and Server Server and Server	From n-butyraldehyde by aldo condensation and hydrogenation
Fatty amines	Batch hydrogenation of fatty nitriles
Geraniol	B-Myrcene + hydrogen chloride, esterfication of geranyl chloride hydrolysis of geranyl acetate

Furfuryl alcohol

Geraniol (citral)

Glyoxal

Isobutanol

Isopropanol

2-Mercaptobenzothiazoles, copper salt

Methanol

Methanol

Methyl ethyl ketone

C7-C11 oxo alcohols

Phenol

Polyoxyalkylene amines

Polyphenylene oxide

Polyoxypropylene diamine

Quinaldine dye intermediate

Silicone fluids

Silicone rubbers of the state o

Silicone specialties, such as grease, dispersion agents, defoamers, and other products

Silicone resins

Silicone fluids

Styrene

Hydrogenation of furfural

Oxidation of geraniol, copper catalyst

Oxidation of ethylene glycol

Hydrogenation of isobutyraldehyde, Oxo process

Catalytic hydrogenation of acetone

2-Mercaptobenzothiazole + copper salt

High pressure synthesis from natural gas via synthetic gas

Low pressure synthesis from natural gas via synthetic gas

Dehydrogenation of sec-butanol

Carbonation and hydrogenation of C6-C10 olefins

Liquid phase oxidation of benzoic acid

Polyoxyalkylene glycol + ammonia

Solution polymerization of 2-6xylenol by oxidative coupling cuprous salt catalyst

Polypropylene glycol + ammonia

Skraup reaction of aniline crotonaldehye

Hydrolysis and condensation of chlorosilanes

Hydrolysis and condensation of chlorosilanes

Hydrolysis and condensation of methyl, phenyl, and vinyl chlorosilanes

Hydrolysis of chlorosilanes to acyclic and cyclic organosiloxanes

Dehydration of a-methylbenzyl alcohol, coproduct of propylene oxide

Tetrachloroethylene (perchloroethylene)

~, ·

Tris(anilino)s-triazine

Trichloroethylene

Unsaturated polyester resin

Oxyhydrochlorination of tetrachloroethane

Cyanuric chloride + aniline + cogeners

Oxyhydrochlorination of tetrachloroethane

Reaction of maleic anhydride + phthalic anhydride + propylene glycol polyester with styrene or methyl methacrylate

Cyanide Bearing Waste Streams

Product	Process
Acetone cyanohydrin	Acetone + hydrogen cyanide
Acetonitrile	By-product of acrylonitrile from propylene by ammoxidation
Acrylic resins	Solution polymerization
Acrylic fiber (85% acrylonitrile)	Suspension polymerization and wet spinning
Acrylic fiber (85% acrylonitrile)	Solution polymerization and wet spinning
Acrylonitrile	Ammoxidation of propylene
Adiponitrile	Butadiene + hydrogen cyanide (direct cyanation)
at in the second sec AllyInitrile second s	Allyl chloride + sodium cyanide
Dimethoxybenzaldehyde	Hydroquinone dimethyl ether + hydrogen cyanide, hydrolysis
Benzyl cyanide	Benzyl chloride + sodium cyanide
Coal tar products	Distillation of coal tar condensate
Cyanoacetic acid de la constant activity	Chloracetic acid + sodium cyanide
Cyanuric chloride	Catalyzed trimerization of cyanogen chloride
Vat dyes, indigo paste as vat blue 1	Sodamide + potassium N-phenylglycine, fused with caustic;
a an an an an an ann an ann an ann an an	or N-phenylglycine + aniline +formaldehyde + sodium
and the second second second second second second	bisulfite, sodium cyanide hydrolysis with potassium hydroxide

Disperse dyes, azo and vat

Ethylenediamine tetraacetic acid

Diethylenetriamine pentaacetic acid

N,N'-Bis(o-acetamidophenol)ethylenediamine, ferric complex

Diethylenetriamine pentaacetic acid, pentasodium salts

Hydroxyethyl ethylenediamine triacetic acid, trisodium salt

5,5 Dimethyl hyantoin

Hydrogen cyanide

Iminodiacetic acid

Methionine

Nitrilotriacetic acid

Picolines, mixed

Organic pigments, azo

2-Isopropyl-4-methoxy-pyrimidines

Synthetic pyridine

Cyanopyridine

Sarcosine (N-methyl glycine) sodium salt

Thiophene acetic acid

Tris(anilino)S-triazine

Ethylene diamine + formaldehyde + sodium cyanide

Diethylenetriamine + formaldehyde + sodium cyanide

Salicylaldehyde + ethylene diamine + hydrogen cyanide, hydrolysis to amide

Diethylenetriamine pentaacetic acid + caustic

Ethylene diamine + ethylene oxide + formaldehyde + sodium cyanide, hydrolysis

Acetone + ammonia + carbon dioxide + hydrogen cyanide

Byproduct of acrylonitrile by ammoxidation of propylene

Hexamethylene tetraamine + hydrogen cyanide, hydrolysis of iminoacetonitrile salt

Acrolein + methyl mercaptan, with hydrogen cyanide and ammonium carbonate

Hexamethylene tetraamine + hydrogen cyanide, hydrolysis of nitrilotriacetonitrile salt

Condensation of acetaldehyde + formaldehyde + ammonia

Diazotization of aniline cogener, coupling to B-napthol

Isobutyronitril + methanol, ammonia and methylacetoacetate, ring closure

Condensation of acetaldehyde + ammonia + formaldehyde

Ammoxidation of picoline

Hexamethylene tetraamine + sodium cyanide, hydrolysis

Chloromethylation (hydrogen chloride + formaldehyde) + sodium cyanide, hydrolysis

Cyanuric chloride + aniline and its cogeners

Triethylorthoformate

Trimethylorthoformate

Ethanol + hydrogen cyanide

Methanol + hydrogen cyanide

Lead Bearing Waste Streams

Product	Process		
Alkyd resin	Condensation polymerization		
Alkyd resins			
an teoris de la construction de la Construction de la construction de l	Condensation polymerization of phthalic anhydride + glycerin + vegetable oil esters		
Dialkyldithiocarbamates, metal salts	Dialkylamines + carbon disulfide		
Thiuram (dimethyldithiocarbamate) hexasulfide	Dimethyldithiocarbamate + sulfur		
Triphenylmethane dyes (methyl violet)	Condensation of formaldehyde + N-methylaniline + N,N-dimethylaniline, oxidation of reaction product		
4,4-Bis(N,N-dimethylaniline) carbinol, Michler's hydrol	Oxidation of 4,4-methanylene- bis(N,N-dimethylaniline) with lead oxide		
Naphthenic acid salts			
Stearic acid, metal salts	Neutralization with a metallic base		
	an an ar tha tha generation of the second		
an a			
an a			

Product	Process			
Acetates, 7,11-hexadecadien-1-ol (gossyplure)	Coupling reactions, low pressure hydrogenation, esterification			
Acetates, 9-dodecen-1-ol pheromone	Coupling reactions, low pressure hydrogenation, esterification			
Acrylic acid	Oxidation of propylene via acrolein			
Acrylonitrile	Propylene ammoxidation			
a-Alkanes	Hydrogenation of C6-C22 alpha olefins (ethylene oligomers)			
Adiponitrile	Direct cyanation of butadiene			
alkyl amines	Amination of alcohols			
-Aminoacetanilide	Hydrogenation of 4-Nitroacetanilide			
TTX (control we control the control of the control	Hydrogenation of olefins (cyclohexenes)			
lydrogenated terphenyls	Nickel catalyst, hydrogenation of terphenyl			
isphenol-A, hydrogenated biscyclohexanol-A)	Hydrogenation of bisphenol-A			
utadiene (1,3)	Extractive distillation of C-4- pyrolyzates			
-Butanol	Hydrogenation of n-butyraldehyde, oxo process			
,3 Butylene glycol	Hydrogenation of acetaldol			
,4 Butanediol	Hydrogenation of 1,4 butynediol			
utylenes mixed	Distillation of C4 pyrolyzates			
-Chloro-2-aminophenol	Hydrogenation of 4-chloro-2- nitrophenol			
ilial (hydroxydihydrocitronellal)	Hydration and oxidation of citronellol			
ycloparaffins	Catalytic hydrogenation of aromatics in kerosene solvent			
yclohexanol	Hydrogenation of phenol, distillation			

Cyclohexanone

Dialkyldithiocarbamates, metal salts Ethylamine

Ethylamines (mono, di, and tri)

Isoeugenol, high percent trans

2-Ethylhexanol

Hydrogenated fatty acids

Fatty amines

Fatty amines

Glyoxal-urea formaldehyde textile resin

11-Hexadecenal

Hexahydrophthalic anhydride

Isobutanol

Diisobutyl amine

Isopropyl amines (mono, di)

Linalool

Methanol

Methanol

Methanol

Tris-(hydroxymethyl)methyl amine

N-Methyl morpholine

N-Ethyl morpholine

From phenol via cyclohexanol by hydrogenation-dehydrogenation

Dialkylamines + carbon disulfide

Reductive amination of ethanol

Reductive amination (ammonia + hydrogen) of ethanol

Separation of mixed cis and trans isoeugenols

From n-butyraldehyde by aldol condensation and hydrogenation

Tallow and coco acids + hydrogen

Batch hydrogenation of fatty nitriles

Hydrogenation of tallow and coco nitriles

Condensation to N-bis(hydroxymethyl)ureas and N,N'-di(hydroxyethyl) ureas

Coupling reactions, low pressure hydrogenation

Condensation of butadiene and maleic anhydride (Diels-Alder reaction) + hydrogenation

Hydrogenation of isobutyraldehyde, oxo process

Ammonolysis of isobutanol

Reductive amination (ammonia + hydrogen) of isopropanol

Pyrolysis of 2-pinanol

High pressure synthesis from natural gas via synthetic gas

Low pressure synthesis from natural gas via synthetic gas

Butane oxidation

Hydrogenation of tris(hydroxymethyl) nitromethane

Morpholine + methanol

Morpholine + ethanol

2-Methyl-7,8-epoxy octadecane

Alpha-olefins

Petroleum hydrocarbon resins, hydrogenated

Pinane

2-Pinanol

Bis-(p-octylphenol)sulfide, nickel salt

Piperazine

N,N-Dimethylpiperazine

Polyoxyalkylene amines

Polyoxypropylene diamine

2-Amino-2-methyl-1-propanol

3-Methoxypropyl amine

N-Propylamine

Book Palatipe all Sorbitol

Sulfolane

Thionocarbamates, N-ethyl-oisopropyl

Toluene diamine (mixture)

Methylated urea formaldehyde resins (textile)

Methylated urea-formaldehyde glyoxol (textile resins)

Coupling reactions, low pressure hydrogenation, epoxidation

Ethylene oligomer and Zeigler catalyst

Hydrogenation of petroleum hydrocarbon resin products

Hydrogenation of A-pinene

Reduction of pinane hydroperoxide

p-Octylphenol + sulfur chloride (S2C12) neutralize with nickel base

Reductive amination of ethanol amine (ammonia and hydrogenation metal catalyst)

Condensation piperazine + formaldehyde hydrogenation

Polyoxyalkylene glycol + ammonia

Polypropylene glycol + ammonia

Hydrogenation of 2-nitro 2-methyl-1propanol

Reductive amination of acrylamide with methanol and hydrogen

Reductive amination (ammonia + hydrogen) of n-propanol

Hydrogenation of sugars

Condensation butadiene + sulfur dioxide, hydrogenation

Isopropyl xanthate + ethylamine

Catalytic hydrogenation of dinitrotoluene

Methylation of urea-formaldehyde adduct

Reaction of methylated ureaformaldehyde + glyoxal

Zinc Bearing Waste Streams Product Process Derivatives of abietic esters from Methylhydroabietate, diels-alder adducts rosin Emulsion or solution polymerization Acrylic resins to coatings Emulsion polymerization of Acrylic resins (latex) acrylonitrile with polybutadiene By solution polymerization/wet Acrylic fibers (85% polyacrylonitrile) spinning Condensation polymerization of Alkyd resins phthalic anhydride + glycerin + vegetable oil esters By-product of styrene by ethyl-Benzene benzene dehydrogenation Byproduct of vinyl toluene from Benzene ethyl toluene Hydrogenation of n-butyraldehyde, n-Butyl alcohol oxo process Salicylaldehyde; Oxo process Coumarin (benz-a-pyrone) Catalytic hydrogenation of aromatics Cycloparaffins in kerosene solvent Reaction of zinc oxide + sodium Dithiocarbamates, zinc salt dithiocarbamates Dialkylamines + carbon disulfide Dialkyldithiocarbamates, metal salts Dithiocarbamic acid + metal oxide Dithiocarbamates, metal salts Thiuram (dimethyldithiocarbamate) Dimethyldithiocarbamate + sulfur hexasulfide Coumarin based Fluorescent brighteners Redox reaction (Tschenko) of Ethyl acetate acetaldehyde Benzene alkylation in liquid phase Ethylbenzene Chloromethylation (hydrogen chloride Ethylbenzyl chloride + formaldehyde, zinc chloride) of ethylbenzene Aldol condensation-hydrogenation of 2-Ethyl hexanol n-butyraldehyde

Glyoxal-urea formaldehyde textile resin

Isobutanol

Isopropanol

Methallylidene diacetate

Methanol and the second second

Methyl chloride Methylethyl ketone

Naphthenic acid salts Nylon

Nylon 6 and 66 copolymers

Nylon 6 fiber

C12-C15 oxo alcohols

Phenolic urethan resins

Polystyrene crystal and the second se

Rayon a state of the state of the second sec

SAN resin

Silicone rubbers

Silicone specialties, such as grease, dispersion agents, defoamers, and other products

Silicone resins

e e tata prove per l'interna a superior superior de la composición de la composición de la composición de la c

Silicone fluids and the second state of the state of the

Stearic acid, metal salts particulation of the second statements of the second statement of the second

Condensation to N-bis (hydroxymethyl) ureas + N,N'-(dihydroxyethyl) ureas

Hydrogenation of isobutyraldehyde, Oxo process

Catalytic hydrogenation of acetone

Condensation of 2-methypropenal + acetic anhydride

Low pressure synthesis from natural gas via synthetic gas

Hydrochlorination of methanol Dehydrogenation of sec-butanol

Polycondensation of nylon salt + caprolatam

Extrusion melt spinning

Hydroformylation and hydrogenation of C11-C14 olefins

Phenol + excess formaldehyde + methylene aniline diisocyanate

Polystyrene + sulfonation, Chloromethylation and/or amination

Viscose process

Emulsion polymerization

Hydrolysis and condensation of chlorosilanes

Hydrolysis and condensation of methyl, phenyl, and vinyl chlorosilanes

Hydrolysis of chlorosilanes to acyclic and cyclic organosiloxanes Neutralization with a metallic base

Neutralization with a metallic base

Styrene	n di seconda	Dehydrogenation of ethylbenzene			
Styrene-butadiene resin		Emulsion polymerization			
Vinyl acetate	an ang sa tinggan ang sa	Reduction of acetylene + acetic acid			
Vinyl toluene		Thermal dehydrogenation of ethyltoluene			
Xylenes, mixed		By-product vinyl toluene from ethyltoluene			

Note: The Wisconsin administrative code corresponds to the code of federal regulations according to the following table:

<u>s</u>	tate	code	Cod	de of F	ede:	ral Regulations
s	. NR	205.03	40	C.F.R.	s.	401.11
s	. NR	205.04	4.0	C.F.R.	s.	401.11
ch	. NR	211	40	C.F.R.	Par	rt 403
s	. NR	211.03	40	C.F.R.	s.	403.3
S	. NR	211.13	40	C.F.R.	s.	403.7 .
s	. NR	211.14	40	C.F.R.	s.	403.17
ch	. NR	235	40	C.F.R.	Pai	rt 414

The foregoing rules were approved and adopted by the State of Wisconsin Natural Resources Board on _______October 23, 1996______.

The rules shall take effect on the first day of the month following publication in the Wisconsin administrative register, as provided in s. 227.22(2), Stats.

Dated at Madison, Wisconsin

ecember 12, 1996

STATE OF WISCONSIN DEPARTMENT OF NATURAL RESOURCES

By George E. Meyer Secretary

SEAL

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Tommy G. Thompson, Governor George E. Meyer, Secretary Box 7921 101 South Webster Street Madison, Wisconsin 53707-7921 TELEPHONE 608-266-2621 FAX 608-267-3579 TDD 608-267-6897

December 11, 1996

Mr. Gary L. Poulson Assistant Revisor of Statutes 131 West Wilson Street - Suite 800 Madison, WI

Dear Mr. Poulson,

Enclosed are two copies, including one certified copy, of State of Wisconsin Natural Resources Board Order No. WW-21-96. These rules were reviewed by the Assembly Committee on Environment and Utilities and the Senate Committee on Environmental Resources and Urban Affairs pursuant to s. 227.19, Stats. Summaries of the final regulatory flexibility analysis and comments of the legislative review committees are also enclosed.

You will note that this order takes effect following publication. Kindly publish it in the Administrative Code accordingly.

Sincerely,

George E. Melver Secretary

Enc.

