Underground Storage Tank Installation Checklist					
Facility: Facility ID:		rainer	Date	Supervisor	Date
	Code References	F	Õ	รั	Õ
A. Plan approval					
1) Plans have been submitted and approved.					
2) State plan number/LPO plan number is:					
3) Tank Capacity: gallons					
4) Tank contents, if known:					
B. Tank construction					
1) Tank is new and carries UL or other national testing label.					
2) Tank is used, but has been recertified to meet current codes and standards.					
3) Tank is corrosion protected (fiberglass or composite tank) and matches the					
equipment listed in the plan review.					
4) Tank vents do not terminate under eaves, are at least 5 feet from a building opening,					
and 15 feet from Power Vent air intake devices.					
5) Class I flammable tank vents discharge at least 12 feet above ground level, or if					
installed within or attached to a canopy discharge is at least 5 feet above the highest					
part of the canopy.					
6) Class II or III A liquid storage tank vents discharge higher than the fill pipe opening,					
and a minimum of 4 feet above ground level.					
7) Overfill protection device is installed and matches plan submittal.					
8) Spill containment device is installed.					
C. Tank handling and testing					
1) Pre-installation test of double-walled tank: 1) pressurize inner tank to a maximum of					
5 psi, seal inner tank and disconnect external air supply, monitor for one hour. After					
one hour, pressurize the interstitial space with a maximum 5 psi air from the inner tank					
and use a second gauge for monitoring the pressure. Soap all surfaces, seams and					

	 	1	
fittings and inspect for bubbles. OR 2) Tank interstitial maintaining original factory			
vacuum/liquid fill level requirements			
2) Tank tested after backfilling through precision test, approved tank gauge or			
interstitial monitor.			
3) Tank gauge or interstitial monitor verified as operative.			
4) Tank coating was inspected and any damage to the coating repaired.			
D. Tank site and backfill			
1) Tank is located a minimum of 3 feet from property lines and 1 foot from buildings.			
2) Tank is spaced a minimum of 2 feet from any other tank, and from excavation walls.			
3) Backfill for composite, fiberglass clad steel, or fiberglass- tank is clean, washed, well			
granulated sand, crushed rock, or is pea gravel naturally round with minimum diameter			
of 1/8 inch and maximum size of 3/4 inch, or crushed rock or gravel between 1/8 and			
1/2 inch in size.			
4) Minimum of 1 foot of compacted backfill in bottom of excavation or over top of hold			
down pad.			
5) Backfill compaction is adequate to securely and evenly support the tank and prevent			
movement/settlement.			
6) Excavation is in a bog, swampy area or landfill and a filter fabric was used to prevent			
the migration of the backfill material.			
7) Backfill materials over the top of a tank in an area subject to traffic should be			
compacted to a minimum depth of: 36 inches if unpaved; 30 inches if paved with 6			
inches of asphalt; 18 inches if paved with 8 inches of reinforced concrete.			
8) Backfill materials over the top of a tank in an area not subject to traffic should be			
compacted to a minimum depth of: 2 feet if unpaved; 1 foot if paved with 6 inches of			
asphalt or 4 inches of reinforced concrete.			
E. Tank anchorage	 		
1) Installation is in an area of high water table or subject to flooding and tank is			
anchored.			
2) Anchor straps for tank were non-conductive and placed according to manufacturer's			
specifications			

F. Piping (Indicate whether piping is ☐ Fiberglass or ☐ Flexible)		
1) Piping maintains a 1/8 inch per foot slope toward a sump or a tank.		
2) Piping trench provides a total of at least 18 inches of compacted backfill and paving		
on top of piping.		
3) Pipes are separated by at least twice the pipe diameter.		
4) Pipes are separated from the trench excavation sidewalls, electrical conduit, utilities,		
and other structures, by at least 6 inches.		
5) Piping was isolated from the tank and dispenser and tested at 150% of operating		
pressure of the system (but not less than 50 psi) for 1 hour prior to and after backfilling.		
6) Secondary containment piping was tested for tightness before it was covered,		
enclosed or placed in use. For fiberglass piping test at 10 psi		
7) For flexible secondary piping, test at manufacturers' recommendation: psi.		
8) After backfilling, piping was isolated from the tank and dispenser and precision		
tested at 110% of operating pressure but not less than 50 psi for 1 hour.		
9) Piping was isolated from the tank and dispenser and tested through another		
approved means prior to and after backfilling. Indicate method(s):		
a. Prior After		
G. Pre-operational functionality verification (Both TANK and PIPING)		
1) Tank precision tightness test, including the ullage, verified the tank is tight		
2) Sumps and spill buckets have been verified as liquid tight		
3) All sensors have been verified as functional		
4) ATG setup has been verified as accurate and functional		
5) Leak detection method has been verified functional within the respective		
methodology parameters		
H. Primary leak detection (Check which applies under both TANK and PIPING) □		
Inspector Verified		
1) Tank: n/a Electronic interstitial monitoring		
Manufacturer: Sensor/Probe #:		
Model Name/#: Material Approval #:		
2) Piping Pipe construction material: Fiberglass Flexible Other (type):		

3) Primary Piping System Type: Pressurized piping Suction piping with check		
valve at tank		1
☐ Suction piping with check valve at pump and inspectable		<u> </u>
4) Piping Catastrophic leak detection method: Pressurized piping with → □ Pump auto		
shutoff - ELLD		
5) Piping leak detection method: Electronic interstitial monitoring – sump sensor or leak		
sensing cable		1
a. Manufacturer/Sensor Model:		