NR 274.001

1

Chapter NR 274

NONFERROUS METALS MANUFACTURING

NR 274.001	Purpose.	NR 274.063	Effluent limitations representing the degree of effluent reduction at-
NR 274.002	Applicability.		tainable by the application of the best available technology eco-
NR 274.003	General definitions.		nomically achievable.
NR 274.004	Compliance dates.	NR 274.064	New source performance standards.
NR 274.005	Removal allowances for pretreatment standards.	NR 274.065	Pretreatment standards for existing sources.
NR 274.006	General provisions.	NR 274.066	Pretreatment standards for new sources.
	— Bauxite Refining		VII — Primary Lead
NR 274.01	Applicability; description of the bauxite refining subcategory.	NR 274.07	Applicability; description of the primary lead subcategory.
NR 274.011	Specialized definitions.	NR 274.072	Effluent limitations representing the degree of effluent reduction at-
NR 274.012	Effluent limitations representing the degree of effluent reduction at- tainable by the application of the best practicable control technol-		tainable by the application of the best practicable control technol- ogy currently available.
	ogy currently available.	NR 274.073	Effluent limitations representing the degree of effluent reduction at-
NR 274.013	Effluent limitations representing the degree of effluent reduction at-	TUR 274.075	tainable by the application of the best available technology eco-
111127 11013	tainable by the application of the best available technology eco-		nomically achievable.
	nomically achievable.	NR 274.074	New source performance standards.
NR 274.014	New source performance standards.	NR 274.075	Pretreatment standards for existing sources.
NR 274.016	Pretreatment standards for new sources.	NR 274.076	Pretreatment standards for new sources.
Subchapter I	I — Primary Aluminum Smelting	Subchapter '	VIII — Primary Zinc
NR 274.02	Applicability; description of the primary aluminum smelting	NR 274.08	Applicability; description of the primary zinc subcategory.
	subcategory.	NR 274.082	Effluent limitations representing the degree of effluent reduction at-
NR 274.021	Measurements not detecting benzo(a)pyrene.		tainable by the application of the best practicable control technol-
NR 274.022	Effluent limitations representing the degree of effluent reduction at-	ND 274 092	ogy currently available.
	tainable by the application of the best practicable control technol- ogy currently available.	NR 274.083	Effluent limitations representing the degree of effluent reduction at- tainable by the application of the best available technology eco-
NR 274.023	Effluent limitations representing the degree of effluent reduction at-		nomically achievable.
	tainable by the application of the best available technology eco-	NR 274.084	New source performance standards.
	nomically achievable.	NR 274.085	Pretreatment standards for existing sources.
NR 274.024	New source performance standards.	NR 274.086	Pretreatment standards for new sources.
NR 274.026	Pretreatment standards for new sources.	Subchapter 1	IX — Metallurgical Acid Plants
Subchapter I	II — Secondary Aluminum Smelting	NR 274.09	Applicability; description of the metallurgical acid plants
NR 274.03	Applicability; description of the secondary aluminum smelting		subcategory.
	subcategory.	NR 274.092	
NR 274.032	Effluent limitations representing the degree of effluent reduction at-		tainable by the application of the best practicable control technol-
	tainable by the application of the best practicable control technol-	ND 274 002	ogy currently available.
NR 274.033	ogy currently available.	NR 274.093	Effluent limitations representing the degree of effluent reduction at-
NK 274.033	Effluent limitations representing the degree of effluent reduction at- tainable by the application of the best available technology eco-		tainable by the application of the best available technology eco- nomically achievable.
	nomically achievable.	NR 274.094	New source performance standards.
NR 274.034	New source performance standards.	NR 274.095	Pretreatment standards for existing sources.
NR 274.035	Pretreatment standards for existing sources.	NR 274.096	Pretreatment standards for new sources.
NR 274.036	Pretreatment standards for new sources.	Subchapter 3	X — Primary Tungsten
Subchapter I	V — Primary Copper Smelting	NR 274.10	Applicability; description of the primary tungsten subcategory.
NR 274.04	Applicability; description of the primary copper smelting	NR 274.102	Effluent limitations representing the degree of effluent reduction at-
	subcategory.		tainable by the application of the best practicable control technol-
NR 274.041	Specialized definitions.		ogy currently available.
	Combining waste streams.	NR 274.103	Effluent limitations representing the degree of effluent reduction at-
NR 274.042	Effluent limitations representing the degree of effluent reduction at- tainable by the application of the best practicable control technol-		tainable by the application of the best available technology eco- nomically achievable.
	ogy currently available.	NR 274.104	New source performance standards.
NR 274.043	Effluent limitations representing the degree of effluent reduction at-	NR 274.105	Pretreatment standards for existing sources.
	tainable by the application of the best available technology eco-	NR 274.106	Pretreatment standards for new sources.
	nomically achievable.	Subchapter 3	XI — Primary Columbium-Tantalum
NR 274.044	New source performance standards.	NR 274.11	Applicability; description of the primary columbium-tantalum
NR 274.046	Pretreatment standards for new sources.		subcategory.
	V — Primary Electrolytic Copper Refining	NR 274.112	Effluent limitations representing the degree of effluent reduction at-
NR 274.05	Applicability; description of the primary electrolytic copper refining		tainable by the application of the best practicable control technol-
ND 274 052	subcategory.	ND 274 112	ogy currently available.
NR 274.052	Effluent limitations representing the degree of effluent reduction at-	NR 274.113	Effluent limitations representing the degree of effluent reduction at-
	tainable by the application of the best practicable control technol- ogy currently available.		tainable by the application of the best available technology eco- nomically achievable.
NR 274.053	Effluent limitations representing the degree of effluent reduction at-	NR 274.114	New source performance standards.
	tainable by the application of the best available technology eco-	NR 274.115	Pretreatment standards for existing sources.
	nomically achievable.	NR 274.116	Pretreatment standards for new sources.
NR 274.054	New source performance standards.	Subchapter '	XII — Secondary Silver
NR 274.056	Pretreatment standards for new sources.	NR 274.12	Applicability; description of the secondary silver subcategory.
	VI — Secondary Copper	NR 274.122	Effluent limitations representing the degree of effluent reduction at-
NR 274.06	Applicability; description of the secondary copper subcategory.		tainable by the application of the best practicable control technol-
NR 274.061	Specialized definitions.		ogy currently available.

Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technol-

ogy currently available.

NR 274.062

NR 274.123 Effluent limitations representing the degree of effluent reduction at-

nomically achievable.

tainable by the application of the best available technology eco-

NR 274.001

2

ogy currently available.

nomically achievable.

NR 274.314 New source performance standards.

Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology eco-

NR 274.313

NR 274.234

NR 274.236

NR 274.233 Effluent limitations representing the degree of effluent reduction at-

nomically achievable.

New source performance standards.

Pretreatment standards for new sources

tainable by the application of the best available technology eco-

NR 274.315	Pretreatment standards for existing sources.	Subchapter M	XXXIII — Primary Zirconium and Hafnium
NR 274.316	Pretreatment standards for new sources.	NR 274.33	Applicability; description of the primary zirconium and hafnium
Subchapter X	XXII — Secondary Uranium		subcategory.
NR 274.32	Applicability; description of the secondary uranium subcategory.	NR 274.332	Effluent limitations representing the degree of effluent reduction at-
NR 274.322	Effluent limitations representing the degree of effluent reduction at- tainable by the application of the best practicable control technol-		tainable by the application of the best practicable control technology currently available.
	ogy currently available.	NR 274.333	Effluent limitations representing the degree of effluent reduction at-
NR 274.323	Effluent limitations representing the degree of effluent reduction at-	NK 274.333	tainable by the application of the best available technology eco-
	tainable by the application of the best available technology eco- nomically achievable.		nomically achievable.
NR 274.324	New source performance standards.	NR 274.334	New source performance standards.
NR 274.326	Pretreatment standards for new sources.	NR 274.336	Pretreatment standards for new sources.

Note: Chapter NR 274 as it existed on March 31, 1991 was repealed and a new chapter NR 274 was created effective April 1, 1991.

NR 274.001 Purpose. The purpose of this chapter is to establish effluent limitations, performance standards, and pretreatment standards for discharges of process wastes from the nonferrous metals manufacturing point source category and its subcategories.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.002 Applicability. This chapter applies to facilities which produce primary metals from ore concentrates and recover secondary metals from recycle wastes and which discharge or may discharge pollutants to waters of the state or which introduce or may introduce pollutants into a publicly owned treatment works. The applicability of this chapter to alloying or casting of nonferrous metals is limited to alloying or casting of hot metals directly from the nonferrous metals manufacturing process without cooling. Remelting followed by alloying or cooling is regulated by aluminum forming, 40 CFR Part 467, nonferrous metals forming, 40 CFR Part 471, or metal molding and casting, ch. NR 256.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.003 General definitions. In addition to the definitions set forth in ss. NR 205.03, 205.04, and 211.03, the following definitions are applicable to the terms used in this chapter:

- (1) "Existing source" means any point source, except a new source as defined in sub. (2), from which pollutants may be discharged either into waters of the state or into a publicly owned treatment works.
- (2) "New source," as defined for purposes of new source performance standards and pretreatment standards for new sources, means any point source from which pollutants are or may be discharged directly to waters of the state or into a publicly owned treatment works and for which construction commenced after the date given in the following table:

February 17, 1983

Bauxite Refining

Primary Aluminum Smelting

Secondary Aluminum Smelting

Primary Copper Smelting

Primary Copper Electrolytic Refining

Secondary Copper

Primary Lead

Primary Zinc

Metallurgical Acid Plants

Primary Columbium-Tantalum

Secondary Silver

Secondary Lead

June 27, 1984

Primary Antimony

Primary Beryllium

Primary and Secondary Germanium and Gallium

Secondary Indium

Secondary Mercury

Primary Molybdenum and Rhenium

Secondary Molybdenum and Vanadium

June 27, 1984

Primary Nickel and Cobalt

Secondary Nickel

Primary Precious Metals and Mercury

Secondary Precious Metals

Secondary Tantalum

Secondary Tin

Primary and Secondary Titanium

Secondary Tungsten and Cobalt

Secondary Uranium

Primary Zirconium and Hafnium

January 22, 1987

Primary Tungsten

- (3) "Primary" means the manufacture of a metal from ore concentrates or other virgin materials.
- **(4)** "Secondary" means the manufacture of a metal from scrap or other recycled materials.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

- NR 274.004 Compliance dates. (1) Any existing source subject to this chapter which discharges to waters of the state shall achieve:
- (a) The effluent limitations representing BPT by July 1, 1977; and $\,$
 - (b) The effluent limitations representing BAT by July 1, 1984.
- (2) Any new source subject to this chapter which discharges to waters of the state shall achieve NSPS at the commencement of discharge.
- **(3)** Any existing source subject to this chapter which introduces process wastewater pollutants into a POTW shall achieve PSES according to the date in the following tables:

March 8, 1987

Bauxite refining

Primary aluminum smelting

Secondary aluminum smelting

Primary copper smelting

Primary electrolytic copper refining

Secondary copper

Primary lead

Primary zinc

Metallurgical acid plants

Primary tungsten

Primary columbium-tantalum

Secondary silver

Secondary lead

September 20, 1988

Primary antimony

Primary beryllium

Primary and secondary germanium and gallium

Secondary indium

Secondary mercury

Primary molybdenum and rhenium

Secondary molybdenum and vanadium

Primary nickel and cobalt

Secondary nickel

Primary precious metals and mercury

Secondary precious metals

Primary rare earth metals

Secondary tantalum

Secondary tin

Primary and secondary titanium

Secondary tungsten and cobalt

Secondary uranium

Primary zirconium and hafnium

(4) Any new source subject to this chapter which introduces process wastewater pollutants into a POTW shall achieve PSNS at the commencement of discharge.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.005 Removal allowances for pretreatment standards. Removal allowances according to 40 CFR 403.7(a) may be granted for the toxic metals limited in ch. NR 274 when the toxic metals are used as indicator pollutants.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

- **NR 274.006 General provisions. (1)** The monthly average regulatory values shall be the basis for the monthly average discharge in direct discharge permits and for pretreatment standards.
- (2) Compliance with the monthly discharge limit is required regardless of the number of samples analyzed and averaged.

Subchapter I — Bauxite Refining

NR 274.01 Applicability; description of the bauxite refining subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the refining of bauxite to alumina by the Bayer process and by the combination process.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.011 Specialized definitions. The following definitions apply to the terms used in this subchapter:

- (1) "Bauxite" means ore which contains alumina monohydrate or alumina trihydrate and which serves as the principal raw material for the production of alumina by the Bayer process or by the combination process.
- (2) "Within the impoundment", for purposes of calculating the volume of process wastewater which may be discharged, means the surface area within the impoundment at the maximum capacity plus the area of the inside and outside slopes of the impoundment dam and the surface area between the outside edge of the impoundment dam and seepage ditches upon which rain falls and is returned to the impoundment, but the surface area allowance for external appurtenances to the impoundment shall not be more than 30% of the water surface area within the impoundment dam at maximum capacity.

- (3) "Pond water surface area", for the purpose of calculating the volume of wastewater, means the area within the impoundment for rainfall and the actual water surface area for evaporation. History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.
- NR 274.012 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. (1) Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT.
- **(2)** Except as provided in sub. (3), process wastewater pollutants may not be discharged to waters of the state.
- **(3)** During any calender month, a process wastewater impoundment may discharge from the overflow a volume equivalent to whatever is the greatest of the following:
- (a) The difference between the precipitation for that month which falls within the impoundment and the evaporation from the impoundment for that month; or
- (b) The difference between the mean precipitation for that month which falls within the impoundment and the mean evaporation for that month as established for the impoundment's location by the national climatic center, national oceanic and atmospheric administration, or as otherwise established if no monthly evaporation has been determined by the national climatic center.

 History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.
- NR 274.013 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. (1) Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT.
- **(2)** Except as provided in sub. (3), process wastewater pollutants may not be discharged to waters of the state.
- **(3)** During any calender month, a process wastewater impoundment may discharge from the overflow a volume equivalent to whatever is the greatest of the following:
- (a) The difference between the precipitation for that month which falls within the impoundment and the evaporation from the impoundment for that month; or
- (b) The difference between the mean precipitation for that month which falls within the impoundment and the mean evaporation for that month as established for the impoundment's location by the national climatic center, national oceanic and atmospheric administration, or as otherwise established if no monthly evaporation has been determined by the national climatic center.

 History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.014 New source performance standards.

- (1) Except as provided in sub. (2), any new source subject to this subchapter may not discharge process wastewater pollutants to waters of the state.
- **(2)** During any calender month, a process wastewater impoundment may discharge from the overflow a volume equivalent to whatever is the greatest of the following:
- (a) The difference between the precipitation for that month which falls within the impoundment and the evaporation from the impoundment for that month; or
- (b) The difference between the mean precipitation for that month which falls within the impoundment and the mean evaporation for that month as established for the impoundment's location by the national climatic center, national oceanic and atmo-

spheric administration, or as otherwise established if no monthly evaporation has been determined by the national climatic center. **History:** Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.016 Pretreatment standards for new sources. Any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211.

Subchapter II — Primary Aluminum Smelting

NR 274.02 Applicability; description of the primary aluminum smelting subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of aluminum from alumina in the Hall-Heroult process.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.021 Measurements not detecting benzo(a)pyrene. If a permittee chooses to analyze for benzo(a)pyrene using any EPA approved method, any nondetected measurements shall be considered zeros for purposes of determining compliance with this subchapter.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.022 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 2-1 Primary Aluminum Smelting

Filliary Aluminum Smelling				
BPT Effluent Limitations				
Maximum for Maximum for				
any 1 day monthly average				
Pollutant or pollutant	kg/kkg (pounds per	1,000 pounds) of		
property	hot alumin	um metal		
Fluoride	2.0	1.0		
Total suspended solids	3.0	1.5		
pН	(1)	(1)		
(1) Within the range of 6.0 to 9.0.				

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.023 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 2-2 Primary Aluminum Smelting Anode and Cathode Paste Plant Wet Air Pollution Control

BAT Effluent Limitations				
Maximum for any 1 Maximum for				
	day	monthly average		
Pollutant or pollumg/kg (pounds per 1,000,000 pounds) of				
tant property	past	te		
Benzo(a)pyrene	0.005	0.002		
Antimony	0.263	0.117		
Nickel	0.075	0.050		
Aluminum	0.831	0.369		
Fluoride	8.092	3.591		

Table 2-3
Primary Aluminum Smelting Anode Contact Cooling and Briquette Quenching

	1 6				
BAT Effluent Limitations					
Maximum for any 1 Maximum for					
	day	monthly average			
Pollutant or pollumg/kg (pounds per 1,000,000 pounds) o					
tant property anodes cast		s cast			
Benzo(a)pyrene	0.007	0.003			
Antimony	0.403	0.180			
Nickel	0.115	0.077			
Aluminum	1.277	0.566			
Fluoride	12.440	5.518			

Table 2-4
Primary Aluminum Smelting Anode Bake Plant Wet Air Pollution Control Closed Top Ring Furnace

tion control closed top king I timace				
BAT Effluent Limitations				
Maximum for any 1 Maximum for				
	day	monthly average		
Pollutant or pollu-	Pollutant or pollu- mg/kg(pounds per 1,000,000 pounds) of			
tant property anodes baked		baked		
Benzo(a)pyrene	0.146	0.067		
Antimony	8.346	3.719		
Nickel	2.378	1.600		
Aluminum	26.420	11.720		
Fluoride	257.300	114.200		

Table 2-5
Primary Aluminum Smelting
Anode Bake Plant Wet Air Pollution Control
Open Top Ring Furnace With Spray Tower

BAT Effluent Limitations				
Maximum for any 1 Maximum for				
	day	monthly average		
Pollutant or pollu- mg/kg (pounds per1,000,000 pounds) of				
tant property anodes baked				
Benzo(a)pyrene	0.002	0.001		
Antimony	0.097	0.043		
Nickel	0.028	0.019		
Aluminum	0.306	0.136		
Fluoride	2.975	1.320		

Table 2-6
Primary Aluminum Smelting
Anode Bake Plant Wet Air Pollution Control
Open Top Ring Furnace With Wet Electrostatic Precipitator
and Spray Tower

BAT Effluent Limitations				
	Maximum for	Maximum for		
	any 1 day	monthly average		
Pollutant or pollumg/kg (pounds per 1,000,000 pounds)				
tant property	anodes baked			
Benzo(a)pyrene	0.025	0.011		
Antimony	1.409	0.628		
Nickel	0.402	0.270		
Aluminum	4.461	1.979		
Fluoride	43.440	19.270		

Table 2-7 Primary Aluminum Smelting Anode Bake Plant Wet Air Pollution Control Tunnel Kiln

tion control runner Kim				
BAT Effluent Limitations				
Maximum for M		Maximum for		
	any 1 day	monthly average		
Pollutant or pollu-	mg/kg (pounds per	1,000,000 pounds) of		
tant property	anodes baked			
Benzo(a)pyrene	0.038	0.018		
Antimony	2.197	0.979		
Nickel	0.626	0.421		
Aluminum	6.953	3.084		
Fluoride	67.710	30.050		

Table 2-8
Primary Aluminum Smelting
Cathode Reprocessing Operated With Dry Potline
Scrubbing and Not Commingled With Other Process or
Nonprocess Wastewaters

r - r				
BAT Effluent Limitations				
Maximum for any 1 Maximum for				
	day	monthly average		
Pollutant or pollu-	mg/kg (pounds per 1,	,000,000 pounds) of		
tant property cryolite recovered				
Benzo(a)pyrene	1.181	0.547		
Antimony	420.400	189.200		
Cyanide	157.600	70.060		
Nickel	80.570	35.030		
Aluminum	273.200	122.600		
Fluoride	29,430.000	13,310.000		

Table 2-9
Primary Aluminum Smelting
Cathode Reprocessing Operated With Dry Potline Scrubbing
and Commingled With Other Process or Nonprocess
Wastewaters

Trade Trade I				
BAT Effluent Limitations				
	Maximum for any 1	Maximum for		
	day	monthly average		
Pollutant or pollu-	mg/kg (pounds per 1.	,000,000 pounds) of		
tant property	tant property cryolite recovered			
Benzo(a)pyrene	1.181	0.547		
Antimony	67.610	30.120		
Cyanide	157.600	70.060		
Nickel	19.270	12.960		
Aluminum	214.000	94.930		
Fluoride	2,084.000	924.800		

Table 2-10
Primary Aluminum Smelting Cathode Reprocessing Operated
With Wet Potline Scrubbing

with wet rothine bertubbing				
BAT Effluent Limitations				
	Maximum for	Maximum for		
	any 1 day	monthly average		
Pollutant or pollu-	mg/kg (pounds per 1	1,000,000 pounds) of		
tant property	cryolite recovered			
Benzo(a)pyrene	0.000			
Antimony	0.000	0.000		
Cyanide	0.000	0.000		
Nickel	0.000	0.000		
Aluminum	0.000	0.000		
Fluoride	0.000	0.000		

Table 2-11
Primary Aluminum Smelting Potline Wet Air Pollution
Control Operated Without Cathode Reprocessing

BAT Effluent Limitations				
	Maximum for any 1 Maximum for			
	day	monthly average		
	mg/kg (pounds per 1	,000,000 pounds) of		
Pollutant or pollu-	aluminum produce	aluminum produced from electrolytic		
tant property	reduction			
Benzo(a)pyrene	0.028	0.013		
Antimony	1.618	0.721		
Nickel	0.461	0.310		
Aluminum	5.120	2.271		
Fluoride	49.860	22.130		

Table 2-12

Primary Aluminum Smelting Potline Wet Air Pollution Control Operated With Cathode Reprocessing and Not Commingled With Other Process or Nonprocess Waters

r			
BAT Effluent Limitations			
Maximum for any 1 Maximum fo		Maximum for	
	day	monthly average	
	mg/kg (pounds per 1	,000,000 pounds) of	
Pollutant or pollu-	aluminum produce	aluminum produced from electrolytic	
tant property	reduction		
Benzo(a)pyrene	0.028	0.013	
Antimony	10.060	4.525	
Cyanide	3.771	1.676	
Nickel	1.928	0.838	
Aluminum	6.537	2.933	
Fluoride	703.900	318.500	

Table 2-13

Primary Aluminum Smelting Potline Wet Air Pollution Control Operated With Cathode Reprocessing and Commingled With Other Process or Nonprocess Waters

other rocess or romprocess waters			
BAT Effluent Limitations			
Maximum for any 1 Maximum for		Maximum for	
	day	monthly average	
	mg/kg (pounds per 1,	000,000 pounds) of	
Pollutant or pollu-	aluminum produced from electrolytic		
tant property	reduction		
Benzo(a)pyrene	0.028	0.013	
Antimony	1.618	0.721	
Cyanide	3.771	1.676	
Nickel	0.461	0.310	
Aluminum	5.120	2.271	
Fluoride	49.860	22.130	

Table 2-14 Primary Aluminum Smelting Potroom Wet Air Pollution Control

Control		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		Maximum for
	day	monthly average
	mg/kg (pounds per 1,	000,000 pounds) of
Pollutant or pollu-	aluminum produced from electrolytic	
tant property	reduction	
Benzo(a)pyrene	0.056	0.026
Antimony	3.204	1.428
Nickel	0.913	0.614
Aluminum	10.140	4.499
Fluoride	98.770	43.830

Table 2-15 Primary Aluminum Smelting Potline Sulfur Dioxide Emissions Wet Air Pollution Control

sions wet All Tollution Control			
BAT Effluent Limitations			
Maximum for	Maximum for		
any 1 day	monthly average		
	,000,000 pounds) of		
aluminum produce	d from electrolytic		
reduction			
0.045	0.021		
2.588	1.153		
0.738	0.496		
8.194	3.634		
79.790	35.400		
	Maximum for any 1 day mg/kg (pounds per 1 aluminum produce reduce 0.045 2.588 0.738 8.194		

Table 2-16
Primary Aluminum Smelting Degassing Wet Air Pollution
Control

Control		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		Maximum for
	day	monthly average
	mg/kg (pounds per 1.	,000,000 pounds) of
Pollutant or pollu-	aluminum produced from electrolytic	
tant property	reduction	
Benzo(a)pyrene	(1)	(1)
Antimony	5.036	2.244
Nickel	1.435	0.965
Aluminum	15.940	7.071
Fluoride	155.300	68.880

⁽¹⁾ This pollutant has no discharge allowance.

Table 2-17
Primary Aluminum Smelting Pot Repair and Pot Soaking

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
	mg/kg (pounds per 1,	000,000 pounds) of
Pollutant or pollu-	aluminum produced	d from electrolytic
tant property	reduction	
Benzo(a)pyrene	0.000	
Antimony	0.000	0.000
Nickel	0.000	0.000
Aluminum	0.000	0.000
Fluoride	0.000	0.000

Table 2-18
Primary Aluminum Smelting Direct Chill Casting Contact
Cooling

BAT Effluent Limitations			
Maximum for Maximum for			
	any 1 day	monthly average	
	mg/kg (pounds per 1	,000,000 pounds) of	
Pollutant or pollu-	aluminum produce	ed from direct chill	
tant property	casting		
Benzo(a)pyrene	(1)	(1)	
Antimony	2.565	1.143	
Nickel	0.731	0.492	
Aluminum	8.120	3.602	
Fluoride	79.080	35.090	

⁽¹⁾ This pollutant has no discharge allowance.

Table 2-19
Primary Aluminum Smelting Continuous Rod Casting Contact
Cooling

Coomig		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1.	,000,000 pounds) of
tant property	aluminum produced from rod casting	
Benzo(a)pyrene	(1)	(1)
Antimony	0.201	0.089
Nickel	0.057	0.038
Aluminum	0.636	0.282
Fluoride	6.188	2.746

⁽¹⁾ This pollutant has no discharge allowance.

Table 2-20
Primary Aluminum Smelting Stationary Casting or Shot Casting Contact Cooling

ing Contact Cooling			
BAT Effluent Limitations			
Maximum for Maximum for			
	any 1 day	monthly average	
	mg/kg (pounds per 1	,000,000 pounds) of	
Pollutant or pollu-	aluminum produced	from stationary cast-	
tant property	ing or shot casting		
Benzo(a)pyrene	0.000		
Antimony	0.000	0.000	
Nickel	0.000	0.000	
Aluminum	0.000	0.000	
Fluoride	0.000	0.000	

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.024 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 2-21 Primary Aluminum Smelting Anode and Cathode Paste Plant Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		s per 1,000,000
property	pounds	of paste
Benzo(a)pyrene	0.000	
Antimony	0.000	0.000
Nickel	0.000	0.000
Aluminum	0.000	0.000
Fluoride	0.000	0.000
Oil and grease	0.000	0.000
Total suspended solids	0.000	0.000
pH	(1)	(1)

 $^{^{\}left(1\right)}$ Within the range of 7.0 to 10.0 at all times.

Table 2-22 Primary Aluminum Smelting Anode Contact Cooling and Briquette Quenching

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pound	s per 1,000,000
property	pounds) of	anodes cast
Benzo(a)pyrene	0.007	0.003
Antimony	0.403	0.180
Nickel	0.115	0.077
Aluminum	1.277	0.566
Fluoride	12.440	5.518
Oil and grease	2.090	2.090
Total suspended solids	3.135	2.508
рН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 2-23 Primary Aluminum Smelting Anode Bake Plant Wet Air Pollution Control

	tion Control	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pound	s per 1,000,000
property	pounds) of	anodes baked
Benzo(a)pyrene	0.000	
Antimony	0.000	0.000
Nickel	0.000	0.000
Aluminum	0.000	0.000
Fluoride	0.000	0.000
Oil and grease	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 2-24
Primary Aluminum Smelting Cathode Reprocessing Operated
With Dry Potline Scrubbing and Not Commingled With Other
Process or Nonprocess Wastewaters

1 rocess of romprocess wastewaters		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pound	s per 1,000,000
property	pounds) of cry	olite recovered
Benzo(a)pyrene	1.181	0.547
Antimony	420.400	189.200
Cyanide	157.600	70.060
Nickel	80.570	35.030
Aluminum	273.200	122.600
Fluoride	29,430.000	13,310.000
Oil and grease	350.300	350.300
Total suspended solids	2,172.000	945.800
pН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 2-25
Primary Aluminum Smelting Cathode Reprocessing Operated
With Dry Potline Scrubbing and Commingled With Other
Process or Nonprocess Wastewaters

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		s per 1,000,000
property	pounds) of cry	yolite recovered
Benzo(a)pyrene	1.181	0.547
Antimony	67.610	30.120
Cyanide	157.600	70.060
Nickel	19.270	12.960
Aluminum	214.000	94.930
Fluoride	2,084.000	924.800
Oil and grease	350.300	350.300
Total suspended solids	2,172.000	945.800
pH	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 2-26
Primary Aluminum Smelting Potline Wet Air Pollution Control

	NSPS	
	Maximum for any	Maximum for
	1 day	monthly average
	mg/kg (pounds	per 1,000,000
Pollutant or pollutant	pounds) of alumin	um produced from
property	electrolytic	reduction
Benzo(a)pyrene	0.000	0.000
Antimony	0.000	0.000
Nickel	0.000	0.000
Aluminum	0.000	0.000
Fluoride	0.000	0.000
Oil and grease	0.000	0.000
Total suspended solids	0.000	0.000
pH	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 2-27
Primary Aluminum Smelting Potroom Wet Air Pollution

	Control	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pound	s per 1,000,000
Pollutant or pollutant	pounds) of alumir	num produced from
property	electrolyti	c reduction
Benzo(a)pyrene	0.000	
Antimony	0.000	0.000
Nickel	0.000	0.000
Aluminum	0.000	0.000
Fluoride	0.000	0.000
Oil and grease	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 2-28 Primary Aluminum Smelting Potline Sulfur Dioxide Emissions Wet Air Pollution Control

wet All I offution control		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pound	s per 1,000,000
Pollutant or pollutant	pounds) of alumin	num produced from
property	electrolyti	c reduction
Benzo(a)pyrene	0.045	0.021
Antimony	2.588	1.153
Nickel	0.738	0.496
Aluminum	8.194	3.634
Fluoride	79.790	35.400
Oil and grease	13.410	13.410
Total suspended solids	20.120	16.090
pН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 2-29 Primary Aluminum Smelting Degassing Wet Air Pollution

	Control	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
		s per 1,000,000
Pollutant or pollutant	pounds) of alumin	num produced from
property	electrolyti	c reduction
Benzo(a)pyrene	0.000	
Antimony	0.000	0.000
Nickel	0.000	0.000
Aluminum	0.000	0.000
Fluoride	0.000	0.000
Oil and grease	0.000	0.000
Total suspended solids	0.000	0.000
pH	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 2-30 Primary Aluminum Smelting Pot Repair and Pot Soaking

Timary Munimum Shierting 1 of Repair and 1 of Soaking		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pound	s per 1,000,000
Pollutant or pollutant	pounds) of alumir	num produced from
property	electrolyti	c reduction
Benzo(a)pyrene	0.000	
Antimony	0.000	0.000
Nickel	0.000	0.000
Aluminum	0.000	0.000
Fluoride	0.000	0.000
Oil and grease	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.0 to 10.0 at all times.

Table 2-31 Primary Aluminum Smelting Direct Chill Casting Contact Cooling

Coomig	
NSPS	
Maximum for	Maximum for
any 1 day	monthly average
mg/kg (pound	s per 1,000,000
pounds) of alumin	num produced from
direct chill casting	
(1)	(1)
2.565	1.143
0.731	0.492
8.120	3.602
79.080	35.090
13.290	13.290
19.940	15.950
(2)	(2)
	NSPS Maximum for any 1 day mg/kg (pound pounds) of alumin direct ch 2.565 0.731 8.120 79.080 13.290 19.940

Table 2-32 Primary Aluminum Smelting Continuous Rod Casting Contact

	Cooling	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pound	s per 1,000,000
Pollutant or pollutant	pounds) of alumin	num produced from
property		easting
Benzo(a)pyrene	(1)	(1)
Antimony	0.201	0.089
Nickel	0.057	0.038
Aluminum	0.636	0.282
Fluoride	6.188	2.746
Oil and grease	1.040	1.040
Total suspended solids	1.560	1.248
pН	(2)	(2)

This pollutant has no discharge allowance (2) Within the range of 7.0 to 10.0 at all times.

Primary Aluminum Smelting Stationary Casting or Shot Casting Contact Cooling

	Contact Cooming	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds	s per 1,000,000
Pollutant or pollutant	pounds) of alumin	um produced from
property	stationary casting	or shot casting
Benzo(a)pyrene	0.000	
Antimony	0.000	0.000
Nickel	0.000	0.000
Aluminum	0.000	0.000
Fluoride	0.000	0.000
Oil and grease	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

⁽a) This pollutant has no discharge allowance.
(b) Within the range of 7.0 to 10.0 at all times, but if this waste is discharged separately and without commingling with any other wastewater, the pH shall be within the range of 6.0 to 10.0 at all times.

Table 2-33

10

NR 274.026 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the following PSNS:

Table 2-34
Primary Aluminum Smelting Anode and Cathode Paste Plant
Wet Air Pollution Control

vet in i onution control		
PSNS		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	pas	ste
Benzo(a)pyrene	0.000	
Nickel	0.000	0.000
Fluoride	0.000	0.000

Table 2-35
Primary Aluminum Smelting Anode Contact Cooling and Briquette Quenching

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	anode	es cast
Benzo(a)pyrene	0.007	0.003
Nickel	0.115	0.077
Fluoride	12.440	5.518

Table 2-36 Primary Aluminum Smelting Anode Bake Plant Wet Air Pollution Control

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	anodes baked	
Benzo(a)pyrene	0.000	
Nickel	0.000	0.000
Fluoride	0.000	0.000

Table 2-37

Primary Aluminum Smelting Cathode Reprocessing Operated With Dry Potline Scrubbing and Not Commingled With Other Process or Nonprocess Wastewaters

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1.	,000,000 pounds) of
tant property	cryolite re	ecovered
Benzo(a)pyrene	1.181	0.547
Cyanide	157.600	70.060
Nickel	80.570	35.030
Fluoride	29,430.000	13,310.000

Table 2-38

Primary Aluminum Smelting Cathode Reprocessing Operated With Dry Potline Scrubbing and Commingled With Other Process or Nonprocess Wastewaters

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	cryolite recovered	
Benzo(a)pyrene	1.181	0.547
Cyanide	157.600	70.060
Nickel	19.270	12.960
Fluoride	2,084.000	924.800

Table 2-39

Primary Aluminum Smelting Pottine wet Air Poliution Control			
PSNS			
	Maximum for any 1	Maximum for	
	day	monthly average	
	mg/kg (pounds per 1	,000,000 pounds) of	
Pollutant or pollu-	aluminum produce	d from electrolytic	
tant property	reduction		
Benzo(a)pyrene	0.000		
Nickel	0.000	0.000	
Fluoride	0.000	0.000	

Table 2-40 Primary Aluminum Smelting Potroom Wet Air Pollution

	Control	
	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per 1.	,000,000 pounds) of
Pollutant or pollu-	aluminum produced	d from electrolytic
tant property	reduction	
Benzo(a)pyrene	0.000	
Nickel	0.000	0.000
Fluoride	0.000	0.000

Table 2-41
Primary Aluminum Smelting Potline Sulfur Dioxide Emissions
Wet Air Pollution Control

Wet Air Pollution Control			
PSNS			
	Maximum for any 1	Maximum for	
	day	monthly average	
	mg/kg (pounds per 1,		
Pollutant or pollu-	aluminum produced	d from electrolytic	
tant property	reduction		
Benzo(a)pyrene	0.045	0.021	
Nickel	0.738	0.496	
Fluoride	79.790	35.400	

Table 2-42 Primary Aluminum Smelting Degassing Wet Air Pollution Control

Control		
	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per 1	,000,000 pounds) of
Pollutant or pollu-	aluminum produce	d from electrolytic
tant property	reduction	
Benzo(a)pyrene	0.000	
Nickel	0.000	0.000
Fluoride	0.000	0.000

Table 2-43 Primary Aluminum Smelting Pot Repair and Pot Soaking

PSNS	
Maximum for any 1	Maximum for
day	monthly average
mg/kg (pounds per 1	,000,000 pounds) of
aluminum produced from electrolytic	
reduction	
0.000	
0.000	0.000
0.000	0.000
	Maximum for any 1 day mg/kg (pounds per 1, aluminum produced reduction 0.000 0.000

DEPARTMENT OF NATURAL RESOURCES

Table 2-44
Primary Aluminum Smelting Direct Chill Casting Contact
Cooling

	Cooling	
	PSNS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds per 1	,000,000 pounds) of
Pollutant or pollu-	aluminum produce	d from direct chill
tant property	casting	
Benzo(a)pyrene	(1)	(1)
Nickel	0.731	0.492
Fluoride	79.080	35.090

⁽¹⁾ This pollutant has no discharge allowance.

Table 2-45
Primary Aluminum Smelting Continuous Rod Casting Contact

	Cooling	
	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	aluminum produce	d from rod casting
Benzo(a)pyrene	(1)	(1)
Nickel	0.057	0.038
Fluoride	6.188	2.746
(1) This pollutant has no dis	charge allowance	

⁽¹⁾ This pollutant has no discharge allowance.

Table 2-46

Primary Aluminum Smelting Stationary Casting or Shot Casting Contact Cooling

ing Contact Cooling		
	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per 1	
Pollutant or pollu-	aluminum produced	from stationary cast-
tant property	ing or sho	ot casting
Benzo(a)pyrene	0.000	
Nickel	0.000	0.000
Fluoride	0.000	0.000
TT4 : 00 70 1 3		0.4

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter III — Secondary Aluminum Smelting

NR 274.03 Applicability; description of the secondary aluminum smelting subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the recovery, processing, and remelting of aluminum scrap to produce metallic aluminum alloys.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.032 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. (1) Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT.

- (2) Facilities which use water for metal cooling may not discharge process wastewater pollutants to waters of the state.
- **(3)** Facilities which use aluminum fluoride in their magnesium removal process may not discharge process wastewater pollutants to waters of the state.
- **(4)** Facilities which use chlorine in their magnesium removal process shall achieve the following limitations:

Table 3-1 Secondary Aluminum Smelting Magnesium Removal Process Using Chlorine

Using Chlorine		
BPT Effluent Limitations		
Maximum average of daily val-		
ues for 30 consecutive days		
Pollutant or pollutant kg/kkg (pounds per 1,000 pounds)		
property of magnesium removed		
Total suspended solids	175	
Chemical oxygen demand 6.5		
pH (1)		
(1) ****** 4		

⁽¹⁾ Within the range of 7.5 to 9.0.

(5) Facilities which process residues by wet methods shall achieve the following limitations:

Table 3-2 Secondary Aluminum Smelting Residue Processed By Wet Methods

Wichiods		
BPT Effluent Limitations		
Maximum average of daily val		
	ues for 30 consecutive days	
Pollutant or pollutant	kg/kkg (pounds per 1,000 pounds)	
property	of hot aluminum metal	
Total suspended solids	1.5	
Fluoride	0.4	
Ammonia (as N)	0.01	
Aluminum	1.0	
Copper	0.003	
Chemical oxygen demand	1.0	
рН	(1)	
(1) Within the range of 7.5 to 0.0		

Within the range of 7.5 to 9.0.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.033 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 3-3 Secondary Aluminum Smelting Scrap Drying Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	scrap dried	
Lead	0.000	0.000
Zinc	0.000	0.000
Aluminum	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 3-4 Secondary Aluminum Smelting Scrap Screening and Milling

BAT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	aluminum scrap sc	creened and milled
Lead	0.000	0.000
Zinc	0.000	0.000
Aluminum	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 3-5 Secondary Aluminum Smelting Dross Washing

becondary maintain binering bross washing		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	dross v	vashed
Lead	3.043	1.413
Zinc	11.090	4.565
Aluminum	66.410	29.450
Ammonia (as N)	1,449.000	636.900

Table 3-6

Secondary Aluminum Smelting Demagging Wet Air Pollution Control

Control		
BAT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollu-	mg/kg (pounds per	1,000,000 pounds) of
tant property	aluminum	demagged
Lead	0.216	0.100
Zinc	0.786	0.324
Aluminum	4.711	2.090
Ammonia (as N)	102.800	45.180

Table 3-7

Secondary Aluminum Smelting Delacquering Wet Air Pollution Control

tion control		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1.	,000,000 pounds) of
tant property	aluminum d	elacquered
Lead	0.093	0.043
Zinc	0.340	0.140
Aluminum	2.035	0.903
Ammonia (as N)	44.389	19.514
Total phenolics	0.004	
$(4-AAP)^{(1)}$		

⁽¹⁾ At or before the commingling of delacquering scrubber liquor blowdown with other process or nonprocess waters.

Table 3-8 Secondary Aluminum Smelting Direct Chill Casting Contact Cooling

Coomig		
BAT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	alumin	um cast
Lead	0.372	0.173
Zinc	1.356	0.558
Aluminum	8.120	3.602
Ammonia (as N)	177.200	77.880

Table 3-9

Secondary Aluminum Smelting Ingot Conveyor Contact Cooling When Chlorine Demagging Wet Air Pollution Control Is

Not Practiced On Site

Not I facticed Oil Site		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1.	000,000 pounds) of
tant property	aluminum cast	
Lead	0.019	0.009
Zinc	0.068	0.028
Aluminum	0.409	0.182
Ammonia (as N)	8.931	3.926

Table 3-10 Secondary Aluminum Smelting Ingot Conveyor Contact Cooling When Chlorine Demagging Wet Air Pollution Control Is Practiced On Site

	Truetieed on one	
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	alumini	um cast
Lead	0.000	0.000
Zinc	0.000	0.000
Aluminum	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 3-11 Secondary Aluminum Smelting Stationary Casting Contact Cooling

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	alumin	um cast
Lead	0.000	0.000
Zinc	0.000	0.000
Aluminum	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 3-12 Secondary Aluminum Smelting Shot Casting Contact Cooling

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1.	,000,000 pounds) of
tant property	aluminum cast	
Lead	0.000	0.000
Zinc	0.000	0.000
Aluminum	0.000	0.000
Ammonia (as N)	0.000	0.000

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.034 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 3-13 Secondary Aluminum Smelting Scrap Drying Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		s per 1,000,000
property	pounds) of scrap dried	
Lead	0.000	0.000
Zinc	0.000	0.000
Aluminum	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
Oil and grease	0.000	0.000
рН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.0 to 10.0 at all times.

Table 3-14 Secondary Aluminum Smelting Scrap Screening and Milling

Secondary Aruminum Smerting Scrap Screening and Winning		
NSPS		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pound	s per 1,000,000
Pollutant or pollutant	pounds) of alumir	num scrap screened
property	and i	milled
Lead	0.000	0.000
Zinc	0.000	0.000
Aluminum	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
Oil and grease	0.000	0.000
рН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.0 to 10.0 at all times.

Table 3-15 Secondary Aluminum Smelting Dross Washing

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pound	s per 1,000,000
property	pounds) of	dross washed
Lead	0.000	0.000
Zinc	0.000	0.000
Aluminum	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
Oil and grease	0.000	0.000
рН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.0 to 10.0 at all times.

Table 3-16 Secondary Aluminum Smelting Demagging Wet Air Pollution Control

	Control	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pound	s per 1,000,000
property	pounds) of alun	ninum demagged
Lead	0.216	0.100
Zinc	0.786	0.324
Aluminum	4.711	2.090
Ammonia (as N)	102.800	45.180
Total suspended solids	11.570	9.252
Oil and grease	7.710	7.710
pН	(1)	(1)

 $^{^{\}scriptscriptstyle{(1)}}$ Within the range of 7.0 to 10.0 at all times.

Table 3-17 Secondary Aluminum Smelting Delacquering Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		s per 1,000,000
property	pounds) of alum	inum delacquered
Lead	0.093	0.043
Zinc	0.340	0.140
Aluminum	2.035	0.903
Ammonia (as N)	44.389	19.514
Total phenolics (4-AAP) (1)	0.004	
Total suspended solids	4.995	3.996
Oil and grease	3.330	3.330
pН	(2)	(2)

⁽¹⁾ At or before the commingling of delacquering scrubber liquor blowdown with other process or nonprocess waters.
(2) Within the range of 7.0 to 10.0 at all times.

Table 3-18 Secondary Aluminum Smelting Direct Chill Casting Contact Cooling

	Coomig	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pound	ls per 1,000,000
property	pounds) of aluminum cast	
Lead	0.372	0.173
Zinc	1.356	0.558
Aluminum	8.120	3.602
Ammonia (as N)	177.200	77.880
Total suspended solids	19.400	15.950
Oil and grease	13.290	13.290
рН	(1)	(1)

(1) Within the range of 7.0 to 10.0 at all times.

Table 3-19 Secondary Aluminum Smelting Ingot Conveyor Casting Contact Cooling When Chlorine Demagging Wet Air Pollution
Control Is Not Practiced On Site

	NIGDG	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		s per 1,000,000
property	pounds) of aluminum cast	
Lead	0.019	0.009
Zinc	0.068	0.028
Aluminum	0.409	0.182
Ammonia (as N)	8.931	3.926
Total suspended solids	1.005	0.804
Oil and grease	0.670	0.670
рН	(1)	(1)

(1) Within the range of 7.0 to 10.0 at all times.

Table 3-20
Secondary Aluminum Smelting Ingot Conveyor Contact Cooling When Chlorine Demagging Wet Air Pollution Control Is
Practiced On Site

1.1	acticed on site	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pound	s per 1,000,000
property	pounds) of a	luminum cast
Lead	0.000	0.000
Zinc	0.000	0.000
Aluminum	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
Oil and grease	0.000	0.000
рН	(1)	(1)

PH
(1) Within the range of 7.0 to 10.0 at all times.

Table 3-21 Secondary Aluminum Smelting Stationary Casting Contact Cooling

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		s per 1,000,000
property	pounds) of aluminum cast	
Lead	0.000	0.000
Zinc	0.000	0.000
Aluminum	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
Oil and grease	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 3-22 Secondary Aluminum Smelting Shot Casting Contact Cooling

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		s per 1,000,000
property	pounds) of aluminum cast	
Lead	0.000	0.000
Zinc	0.000	0.000
Aluminum	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
Oil and grease	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

NR 274.035 Pretreatment standards for existing sources. Except as provided in ss. NR 211.13 and 211.14, any new [existing] source subject to the secondary aluminum smelting subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the following PSES:

Table 3-23 Secondary Aluminum Smelting Scrap Drying Wet Air Pollution Control

	tion control	
	PSES	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	aluminum	scrap dried
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 3-24 Secondary Aluminum Smelting Scrap Screening and Milling

	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	aluminum scrap sc	reened and milled
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 3-25 Secondary Aluminum Smelting Dross Washing

	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	dross v	vashed
Lead	3.043	1.413
Zinc	11.090	4.565
Ammonia (as N)	1,449.000	636.000

Table 3-26 Secondary Aluminum Smelting Demagging Wet Air Pollution

Control			
PSES			
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of	
tant property	aluminum	demagged	
Lead	0.216	0.100	
Zinc	0.786	0.324	
Ammonia (as N)	102.800	45.180	

Table 3-27 Secondary Aluminum Smelting Delacquering Wet Air Pollu-

	tion Control	
	PSES	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollu-	mg/kg (pounds per	1,000,000 pounds) of
tant property	aluminum	delacquered
Lead	0.093	0.043
Zinc	0.340	0.140
Ammonia (as N)	44.389	19.514
Total phenolics (4-		
AAP) (1)	0.004	

⁽¹⁾ At or before the commingling of delacquering scrubber liquor blowdown with

other process or nonprocess waters.

Table 3-28 Secondary Aluminum Smelting Direct Chill Casting Contact Cooling

	PSES	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	aluminum cast	
Lead	0.372	0.173
Zinc	1.356	0.558
Ammonia (as N)	177.200	77.800

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Table 3-29
Secondary Aluminum Smelting Ingot Conveyor Casting Contact Cooling When Chlorine Demagging Wet Air Pollution
Control Is Not Practiced On Site

Control to I tot I faction on bite		
PSES		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	aluminum cast	
Lead	0.019	0.009
Zinc	0.068	0.028
Ammonia (as N)	8.931	3.926

Table 3-30

Secondary Aluminum Smelting Ingot Conveyor Contact Cooling When Chlorine Demagging Wet Air Pollution Control Is
Practiced On Site

PSES		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1,	000,000 pounds) of
tant property	aluminum cast	
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 3-31 Secondary Aluminum Smelting Stationary Casting Contact Cooling

	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1.	,000,000 pounds) of
tant property	aluminum cast	
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 3-32
Secondary Aluminum Smelting Shot Casting Contact Cooling

Maximum for	Maximum for
any 1 day	monthly average
ng/kg (pounds per	1,000,000 pounds) of
alumin	num cast
0.000	0.000
0.000	0.000
0.000	0.000
	any 1 day ng/kg (pounds per alumin 0.000 0.000

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.036 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to the secondary aluminum smelting subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the following PSNS:

Table 3-33 Secondary Aluminum Smelting Scrap Drying Wet Air Pollution Control

tion control		
PSNS		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	scrap dried	
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 3-34
Secondary Aluminum Smelting Scrap Screening and Milling

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	aluminum scrap sc	reened and milled
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 3-35 Secondary Aluminum Smelting Dross Washing

Secondary Manimum Smering Diss washing		
PSNS		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	dross washed	
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 3-36 Secondary Aluminum Smelting Demagging Wet Air Pollution

	Control	
	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1,	000,000 pounds) of
tant property	aluminum (demagged
Lead	0.216	0.100
Zinc	0.786	0.324
Ammonia (as N)	102.800	45.180

Table 3-37 Secondary Aluminum Smelting Delacquering Wet Air Pollution Control

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1,	
tant property	aluminum delacquered	
Lead	0.093	0.043
Zinc	0.340	0.140
Ammonia (as N)	44.389	19.514
Total phenolics (4-	0.004	
AAP) (1)		

⁽¹⁾ At or before the commingling of delacquering scrubber liquor blowdown with other process or nonprocess waters.

Table 3-38 Secondary Aluminum Smelting Direct Chill Casting Contact Cooling

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	aluminum cast	
Lead	0.372	0.173
Zinc	1.356	0.558
Ammonia (as N)		

Table 3-39
Secondary Aluminum Smelting Ingot Conveyor Casting Contact Cooling When Chlorine Demagging Wet Air Pollution
Control Is Not Practiced On Site

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	
tant property	aluminum cast	
Lead	0.019	0.009
Zinc	0.068	0.028
Ammonia (as N)	8.931	3.926

Table 3-40

Secondary Aluminum Smelting Ingot Conveyor Contact Cooling When Chlorine Demagging Wet Air Pollution Control Is
Practiced On Site

Truetieed on Site		
PSNS		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	aluminum cast	
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 3-41 Secondary Aluminum Smelting Stationary Casting Contact Cooling

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	aluminu	ım cast
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 3-42
Secondary Aluminum Smelting Shot Casting Contact Cooling
PSNS

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	aluminum cast	
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter IV — Primary Copper Smelting

NR 274.04 Applicability; description of the primary copper smelting subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the primary smelting of copper from ore or ore concentrates by processes such as roasting, converting, leaching if preceded by a pyrometallurgical step, slag granulation and dumping, and fire refining and from the casting of products from these operations.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.041 Specialized definitions. The following definitions apply to the terms used in this subchapter:

(1) "Within the impoundment," for purposes of calculating the volume of process wastewater which may be discharged, has the following meanings:

- (a) If the impoundment was constructed prior to February 27, 1975, "within the impoundment" means the surface area within the impoundment at the maximum capacity plus the surface area of the inside and outside slopes of the impoundment dam and the surface area between the outside edge of the impoundment dam and any seepage ditch adjacent to the dam upon which rain falls and is returned to the impoundment, but the surface area allowance for external appurtenances to the impoundment may not be more than 30% of the water surface area within the impoundment dam at maximum capacity.
- (b) If the impoundment was constructed on or after February 27, 1975, "within the impoundment" means the water surface area within the impoundment at maximum capacity.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.0415 Combining waste streams. If the waste streams subject to this subchapter are combined for treatment or discharge with waste streams subject to the primary electrolytic copper refining subchapter or the metallurgical acid plant subchapter, the quantity of each pollutant or pollutant property discharged may not exceed the quantity of each pollutant or pollutant property which could be discharged if each waste stream was discharged separately.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.042 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. (1) Except as provided in 40 CFR 125.30 to 125.32 and sub. (2), any existing point source subject to this primary copper smelting subchapter may not discharge process wastewater pollutants to waters of the state.

(2) A process wastewater impoundment which is designed, constructed, and operated to contain the precipitation from the 10-year, 24-hour rainfall event as established for the impoundment's location by the national climatic center, national oceanic and atmospheric administration, may discharge a volume of process wastewater equivalent to the volume of precipitation which falls within the impoundment in excess of the precipitation attributable to the 10-year, 24-hour rainfall event, when such an event occurs.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.043 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. (1) Except as provided in 40 CFR 125.30 to 125.32 and sub. (2), any existing point source subject to this subchapter may not discharge process wastewater pollutants into waters of the state.

(2) A process wastewater impoundment which is designed, constructed, and operated to contain the precipitation from the 25-year, 24-hour rainfall event as established for the impoundment's location by the national climatic center, national oceanic and atmospheric administration, may discharge a volume of process wastewater equivalent to the volume of precipitation which falls within the impoundment in excess of the precipitation attributable to the 25-year, 24-hour rainfall event, when such an event occurs.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.044 New source performance standards. Any new source subject to this subchapter may not discharge process wastewater pollutants into waters of the state.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.046 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and may not discharge

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

process wastewater pollutants to a POTW.

Subchapter V — Primary Electrolytic Copper Refining

NR 274.05 Applicability; description of the primary electrolytic copper refining subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the electrolytic refining of primary copper, such as anode casting performed at refineries which are not located on-site with a smelter, product casting, and byproduct recovery.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.052 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology cur**rently available.** Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 5-1

Primary Electrolytic Copper Refining			
BPT I	Effluent Limitations		
		Maximum of	
		daily values for	
	Maximum for	30 consecutive	
	any 1 day	days	
Pollutant or pollutant	kg/kkg (pounds per	1,000 pounds) of	
property	electrolytically r	efined copper	
Total suspended solids	0.100	0.050	
Copper	0.0017	0.0008	
Cadmium	0.00006	0.00003	
Lead	0.0006	0.0026	
Zinc	0.0012	0.0003	
pH	(1)	(1)	
(1) *****			

(1) Within the range of 6.0 to 9.0. History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.053 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 5-2 Primary Electrolytic Copper Refining Casting Contact Cooling

BAT Effluent Limitations		
	Maximum for any 1 Maximum for	
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1,000,000 pounds) of	
tant property	copper cast	
Arsenic	0.692	0.309
Copper	0.638	0.304
Nickel	0.274	0.184

Table 5-3 Primary Electrolytic Copper Refining Anode and Cathode Rinse

Time		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1.	000,000 pounds) of
tant property	cathode copper production	
Arsenic	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000

Primary Electrolytic Copper Refining Spent Electrolyte		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
day monthly average		
Pollutant or pollu-	mg/kg (pounds per 1,	000,000 pounds) of
tant property	copper cathode production	
Arsenic	0.068	0.031
Copper	0.063	0.030
Nickel	0.027	0.018

0.027 Table 5-5

Primary Electrolytic Copper Refining Casting Wet Air Pollu-

tion Control			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of	
tant property	casting production		
Arsenic	0.000	0.000	
Copper	0.000	0.000	
Nickel	0.000	0.000	

Table 5-6

Primary Electrolytic Copper Refining Byproduct Recovery **BAT Effluent Limitations** Maximum for any 1 Maximum for day monthly average mg/kg (pounds per 1,000,000 pounds) of Pollutant or polluproduct recovered from electrolytic tant property slimes processing 0.000 0.000 Arsenic 0.000 Copper 0.000 Nickel 0.000 0.000

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.054 New source performance standards. Any new source subject to this subchapter shall achieve the following standards:

Table 5-7 Primary Electrolytic Copper Refining Casting Contact Cooling

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		s per 1,000,000
property	pounds) of	copper cast
Arsenic	0.692	0.309
Copper	0.638	0.304
Nickel	0.274	0.184
Total suspended solids	7.470	5.976
рН	(1)	(1)
(1) Within the range of 7.5 to 10.0	at all times.	

Table 5-8
Primary Electrolytic Copper Refining Anode and Cathode

	Rinse	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
		s per 1,000,000
Pollutant or pollutant	pounds) of c	athode copper
property	production	
Arsenic	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000
Total suspended solids	0.000	0.000
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 5-9
Primary Electrolytic Copper Refining Spent Electrolyte

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pound	s per 1,000,000
Pollutant or pollutant	pounds) of c	opper cathode
property	production	
Arsenic	0.068	0.031
Copper	0.063	0.030
Nickel	0.027	0.018
Total suspended solids	0.735	0.588
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 5-10
Primary Electrolytic Copper Refining Casting Wet Air Pollution Control

	tion control	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pound	s per 1,000,000
property	pounds) of cas	sting production
Arsenic	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000
Total suspended solids	0.000	0.000
На	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 5-11
Primary Electrolytic Copper Refining Byproduct Recovery

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pound	s per 1,000,000
Pollutant or pollutant	pounds) of produ	act recovered from
property	electrolytic sli	mes processing
Arsenic	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.056 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the following PSNS:

Table 5-12 Primary Electrolytic Copper Refining Casting Contact Cooling

	PSN2	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	coppe	r cast
Arsenic	0.692	0.309
Copper	0.638	0.304
Nickel	0.274	0.184

Table 5-13

Primary Electrolytic Copper Refining Anode and Cathode Rinse

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	cathode coppe	er production
Arsenic	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000

Table 5-14

Primary Electrolytic Copper Refining Spent Electrolyte

PSNS		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1.	,000,000 pounds) of
tant property	cathode coppe	er production
Arsenic	0.068	0.031
Copper	0.063	0.030
Nickel	0.027	0.018

Table 5-15

Primary Electrolytic Copper Refining Casting Wet Air Pollution Control

	tion coming	
PSNS		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per 1	,000,000 pounds) of
tant property	casting pr	oduction
Arsenic	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000

Table 5-16

Primary Electrolytic Copper Refining Byproduct Recovery

Timary Electrony	tie copper iterining by	product recovery
	PSNS	
•	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per 1	,000,000 pounds) of
Pollutant or pollu-	product recovered	from electrolytic
tant property	slimes processing	
Arsenic	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000
H:-t C. D:-t M 1001 N- 422 -ff 4 1 01		

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter VI — Secondary Copper

NR 274.06 Applicability; description of the secondary copper subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the recovery, processing and remelting of new and used copper scrap and residues to produce copper metal and copper alloys, except for continuous rod casting.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.061 Specialized definitions. The following definitions apply to the terms used in this subchapter:

- (2) "Within the impoundment," for purposes of calculating the volume of process wastewater which may be discharged, means the following:
- (a) For all impoundments constructed prior to April 23, 1984, "within the impoundment" means the water surface area within the impoundment at the maximum capacity plus the surface area of the inside and outside slopes of the impoundment dam and the surface area between the outside edge of the impoundment dam and any seepage ditch immediately adjacent to the dam upon which rain falls and is returned to the impoundment, but the surface area allowance for external appurtenances to the impoundment shall not be more than 30% of the water surface area within the impoundment dam at maximum capacity.
- (b) For all impoundments constructed on or after April 23, 1984, "within the impoundment" means the water surface area within the impoundment at the maximum capacity.
- (3) "Pond water surface area," for the purpose of calculating the volume of wastewater which may be discharged, means the water surface area of the pond created by the impoundment for storage of process wastewater at normal operating level, but not less than one third of the surface area of the maximum amount of water which could be contained by the impoundment.
- **(4)** "Normal operating level" means the average level of the pond during the preceding calendar month.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

- NR 274.062 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. (1) Except as provided in 40 CFR 125.30 to 125.32 and subs. (2) and (3), any existing point source subject to this subchapter may not discharge process wastewater pollutants to waters of the state.
- (2) A process wastewater impoundment which is designed, constructed and operated to contain the precipitation from the 10-year, 24-hour rainfall event as established for the impoundment's location by the national climatic center, national oceanic and atmospheric administration, may discharge a volume of process wastewater equivalent to the volume of precipitation which falls within the impoundment in excess of the precipitation attributable to the 10-year, 24-hour rainfall event, when such an event occurs.
- **(3)** During any calendar month, a process wastewater impoundment may discharge from the overflow a volume equivalent to whatever is the greatest of the following:
- (a) The difference between the precipitation for that month which falls within the impoundment and the evaporation from the impoundment for that month; or
- (b) The difference between the mean precipitation for that month which falls within the impoundment and the mean evaporation for that month as established for the impoundment's location by the national climatic center, national oceanic and atmospheric administration or as otherwise established if no monthly evaporation has been determined by the national climatic center.
- (c) Any process wastewater discharge according to this subsection shall comply with the following limitations:

Table 6-1 Secondary Copper BPT Effluent Limitation

BPT Effluent Limitations		
		Maximum aver- age of daily val-
	Maximum for	ues for 30 consec-
	any 1 day	utive days
Pollutant or pollutant		
property	mg/l	(ppm)
Total suspended solids	50	25
Copper	0.5	0.25
Zinc	10	5
Oil and grease	20	10
pH	(1)	(1)

Within the range of 6.0 to 9.0.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.063 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. (1) Except as provided in 40 CFR 125.30 to 125.32 and sub. (2), any existing point source subject to this subchapter may not discharge process wastewater pollutants into waters of the state.

(2) A process wastewater impoundment which is designed, constructed and operated to contain the precipitation from the 25-year, 24-hour rainfall event as established for the impoundment's location by the national climatic center, national oceanic and atmospheric administration, may discharge a volume of process wastewater equivalent to the volume of precipitation which falls within the impoundment in excess of the precipitation attributable to the 25-year, 24-hour rainfall event, when such an event occurs.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.064 New source performance standards. Any new source subject to this subchapter may not discharge process wastewater pollutants into waters of the state.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.065 Pretreatment standards for existing sources. (1) Except as provided in ss. NR 211.13 and 211.14 and sub. (2), any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and may not discharge process wastewater pollutants into a POTW

(2) A process wastewater impoundment which is designed, constructed, and operated to contain the precipitation from the 25-year, 24-hour rainfall event as established for the impoundment's location by the national climatic center, national oceanic and atmospheric administration, may discharge a volume of process wastewater equivalent to the volume of precipitation which falls within the impoundment in excess of the precipitation attributable to the 25-year, 24-hour rainfall event, when such an event occurs.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.066 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to the secondary copper subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and may not discharge process wastewater pollutants into a POTW.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter VII — Primary Lead

NR 274.07 Applicability; description of the primary lead subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of lead at primary lead smelters and refineries.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.072 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 7-1 Primary Lead Sinter Plant Materials Handling Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kkg (pounds	per billion pounds)
property	of sinter production	
Lead	594.000	270.000
Zinc	525.000	219.600
Total suspended solids	14,760.000	7,020.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-2
Primary Lead Blast Furnace Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kkg (pounds	per billion pounds)
Pollutant or pollutant	of blast furna	ce lead bullion
property	produced	
Lead	0.000	0.000
Zinc	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 7-3
Primary Lead Blast Furnace Slag Granulation

Primary Lead Blast Furnace Stag Granulation		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
mg/kkg (pounds per billion pounds)		
Pollutant or pollutant	of blast furna	ce lead bullion
property	produced	
Lead	6,155.000	2,798.000
Zinc	5,446.000	2,276.000
Total suspended solids	153,000.000	72,740.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-4
Primary Lead Dross Reverberatory Slag Granulation

BPT Effluent Limitations		
Maximum for Maximum fo		
	any 1 day	monthly average
Pollutant or pollutant		per billion pounds)
property	of slag, speiss, or matte granulated	
Lead	9,499.000	4,318.000
Zinc	8,405.000	3,512.000
Total suspended solids	236,000.000	112,300.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table /-5

Primary Lead Dross Reverberatory Furnace Wet Air Pollution Control

	Control	
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
mg/kkg (pounds per billion pounds)		
Pollutant or pollutant		tory furnace pollu-
property	tant property production	
Lead	15,920.000	7,235.000
Zinc	14,080.000	5,884.000
Total suspended solids	395,500.000	188,100.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-6

Primary Lead Zinc Fuming Wet Air Pollution Control

Timary Lead Line I dining Wet I in I ondition Control		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kkg (pounds	per billion pounds)
Pollutant or pollutant	of blast furnace lead bullion	
property	produced	
Lead	702.900	319.500
Zinc	622.000	259.900
Total suspended solids	17,470.000	8,307.000
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-7

Primary Lead Hard Lead Refining Slag Granulation

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		per billion pounds)
property	of hard lead produced	
Lead	0.000	0.000
Zinc	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-8

Primary Lead Hard Lead Refining Air Pollution Control

BPT Effluent Limitations		
	Maximum for Maximum for	
	any 1 day	monthly average
Pollutant or pollutant	mg/kkg (pounds p	per billion pounds)
property	of hard lead produced	
Lead	32,730.000	14,880.000
Zinc	28,960.000	12,100.000
Total suspended solids	813,300.000	386,800.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-9
Primary Lead Facility Washdown

Primary Lead Facility Washdown		
BPT Effluent Limitations		
Maximum for Maximum for		
	any 1 day	monthly average
Pollutant or pollutant	mg/kkg (pounds)	per billion pounds)
property	of lead bullion produced	
Lead	0.000	0.000
Zinc	0.000	0.000
Total suspended solids	0.000	0.000
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-10 Primary Lead Employe Handwash

BPT Effluent Limitations		
	Maximum for Maximum for	
	any 1 day	monthly average
Pollutant or pollutant	mg/kkg (pounds)	per billion pounds)
property	of lead bullion produced	
Lead	5.445	2.475
Zinc	4.818	2.013
Total suspended solids	135.300	64.350
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-11 Primary Lead Respirator Wash

Filliary Lead Respirator Wash		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kkg (pounds	per billion pounds)
property	of lead bullion produced	
Lead	8.745	3.975
Zinc	7.738	3.233
Total suspended solids	217.300	103.400
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-12 Primary Lead Laundering of Uniforms

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		per billion pounds)
property	of lead bullion produced	
Lead	25.580	11.630
Zinc	22.630	9.455
Total suspended solids	635.500	302.300
pH .	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

NR 274.073 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 7-13 Primary Lead Sinter Plant Materials Handling Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per billion pounds) of	
tant property	sinter production	
Lead	100.800	46.800
Zinc	367.200	151.200

Table 7-14
Primary Lead Blast Furnace Wet Air Pollution Control
BAT Effluent Limitations

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	blast furnace lead	bullion produced
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-15 Primary Lead Blast Furnace Slag Granulation

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per billion pounds) of	
tant property	blast furnace lead bullion produced	
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-16
Primary Lead Dross Reverberatory Slag Granulation

Timary Lead Dioss Reverberatory Stag Standaction			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
day monthly average			
Pollutant or pollu-	mg/kkg (pounds per billion pounds) of		
tant property	slag, speiss, or matte granulated		
Lead	1,612.000	748.400	
Zinc	5,872.000	2,418.000	

Table 7-17

Primary Lead Dross Reverberatory Furnace Wet Air Pollution

Colition		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
day	monthly average	
mg/kkg (pounds per billion pounds) of		
dross reverberatory	furnace production	
0.000	0.000	
0.000	0.000	
	AT Effluent Limitation Maximum for any I day mg/kkg (pounds per dross reverberatory 0.000	

Table 7-18

Primary Lead Zinc Fuming Wet Air Pollution Control		
B	AT Effluent Limitation	ıs
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	blast furnace lead	bullion produced
Lead	0.000	0.000
Zinc	0.000	0.000

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Table 7-19
Primary Lead Hard Lead Refining Slag Granulation
BAT Effluent Limitations

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	hard lead produced	
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-20 d Refining Wet Air Pollution

Primary Lead Hard Lead Relining Wet Air Pollution Control		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	hard lead	produced
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-21 Primary Lead Facility Washdown

Primary Lead Facility washdown			
B	BAT Effluent Limitations		
Maximum for any 1 Maximum for			
day monthly average			
Pollutant or pollumg/kkg (pounds per billion pounds) of			
tant property	tant property lead bullion produced		
Lead	0.000	0.000	
Zinc	0.000	0.000	

Table 7-22 Primary Lead Employe Handwash

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
day monthly average		
Pollutant or pollu-	mg/kkg (pounds per billion pounds) of	
tant property	lead bullion produced	
Lead	0.924	0.425
Zinc	3.366	1.386

Table 7-23 ary Lead Respirator Wash

Timary Lead Respirator Wash		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	lead bullion	produced
Lead	1.484	0.689
Zinc	5.406	2.226

Table 7-24 Primary Lead Laundering of Uniforms

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per billion pounds) of	
tant property	lead bullion	produced
Lead	4.340	2.015
Zinc	15.810	6.510

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.074 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 7-25 Primary Lead Sinter Plant Materials Handling Wet Air Pollution Control

	tion control	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		per billion pounds)
property	of sinter production	
Lead	0.000	0.000
Zinc	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-26 Primary Lead Blast Furnace Wet Air Pollution Control

	NSPS		
	Maximum for	Maximum for	
	any 1 day	monthly average	
		per billion pounds)	
Pollutant or pollutant	of blast furnace lead bullion		
property	produced		
Lead	0.000	0.000	
Zinc	0.000	0.000	
Total suspended solids	0.000	0.000	
pН	(1)	(1)	

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 7-27 Primary Lead Blast Furnace Slag Granulation

Timary Lead Blast I difface Stag Grandiation		
NSPS		
	Maximum for	Maximum for
	any 1 day	monthly average
		per billion pounds)
Pollutant or pollutant	of blast furna	ce lead bullion
property	produced	
Lead	0.000	0.000
Zinc	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-28
Primary Lead Dross Reverberatory Slag Granulation

Timary Bead Bross Reverseratory Stag Grandiation		
NSPS		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kkg (pounds	per billion pounds)
property	of slag, speiss, o	r matte granulated
Lead	0.000	0.000
Zinc	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

DEPARTMENT OF NATURAL RESOURCES

Table 7-29 Primary Lead Dross Reverberatory Furnace Wet Air Pollution Control

	Control	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kkg (pounds	per billion pounds)
Pollutant or pollutant	of dross revert	peratory furnace
property	production	
Lead	0.000	0.000
Zinc	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-30
Primary Lead Zinc Fuming Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kkg (pounds	per billion pounds)
Pollutant or pollutant	of blast furna	ce lead bullion
property	produced	
Lead	0.000	0.000
Zinc	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

Within the range of 7.5 to 10.0 at all times.

Table 7-31 Primary Lead Hard Lead Refining Slag Granulation

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kkg (pounds	per billion pounds)
property	of hard lead produced	
Lead	0.000	0.000
Zinc	0.000	0.000
Total suspended solids	0.000	0.000
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-32 Primary Lead Hard Lead Refining Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		per billion pounds)
property	of hard lead produced	
Lead	0.000	0.000
Zinc	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)
(1) xx r: 1		

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-33 Primary Lead Facility Washdown

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		per billion pounds)
property	of lead bull	ion produced
Lead	0.000	0.000
Zinc	0.000	0.000
Total suspended solids	0.000	0.000
рH	(1)	(1)
(1) Within the range of 7.5 to 10.0 at all times.		

Table 7-34 Primary Lead Employe Handwash

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kkg (pounds	per billion pounds)
property	of lead bull	ion produced
Lead	0.924	0.429
Zinc	3.366	1.386
Total suspended solids	49.500	39.600
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-35 Primary Lead Respirator Wash

y y		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		per billion pounds)
property	of lead bull	ion produced
Lead	1.484	0.689
Zinc	5.406	2.226
Total suspended solids	79.500	63.600
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 7-36 Primary Lead Laundering of Uniforms

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kkg (pounds	per billion pounds)
property	of lead bull	ion produced
Lead	4.340	2.015
Zinc	15.810	6.510
Total suspended solids	232.500	186.000
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

NR 274.075 Pretreatment standards for existing sources. Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the following PSES:

Table 7-37
Primary Lead Sinter Plant Materials Handling Wet Air Pollution Control

ge
of

Table 7-38 Primary Lead Blast Furnace Wet Air Pollution Control

	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	blast furnace lead	bullion produced
Lead	0.000	0.000
Zinc	0.000	0.000

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Table 7-39 Primary Lead Blast Furnace Slag Granulation		
	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	
tant property	blast furnace lead	bullion produced
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-40			
Primary Lead 1	Primary Lead Dross Reverberatory Slag Granulation		
	PSES		
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kkg (pounds per		
tant property	slag, speiss, or m	natte granulated	
Lead	1,612.000	748.400	
Zinc	5,872.000	2,418.000	

Table 7-41 Primary Lead Dross Reverberatory Furnace Wet Air Pollution Control **PSES** Maximum for any 1 Maximum for monthly average day Pollutant or pollumg/kkg (pounds per billion pounds) of dross reverberatory furnace production tant property Lead 0.000 0.000 0.000 0.000 Zinc

Table 7-42 Primary Lead Zinc Fuming Wet Air Pollution Control		
	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	
tant property	blast furnace lead	bullion produced
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-43		
Primary Lead	Hard Lead Refining Sla	ag Granulation
	PSES	
•	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	hard lead	produced
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-44 Primary Lead Hard Lead Refining Wet Air Pollution Control		
	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	hard lead	produced
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-45		
Prima	ry Lead Facility Wash	down
	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	lead bullion	n produced
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-46		
Prima	ry Lead Employe Hand	lwash
	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	lead bullion produced	
Lead	0.924	0.429
Zinc	3.366	1.386

Table 7-47		
Prin	nary Lead Respirator W	Vash .
	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	lead bullion produced	
Lead	1.484	0.689
Zinc	5.406	2.226

Table 7-48		
Primary Lead Laundering of Uniforms		
PSES		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	lead bullion	produced
Lead	4.340	2.015
Zinc	15.810	6.510

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.076 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the following PSNS:

Table 7-49 Primary Lead Sinter Plant Materials Handling Wet Air Pollution Control

	tion control	
	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per billion pounds) of	
tant property	sinter production	
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-50
Primary Lead Blast Furnace Wet Air Pollution Control

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per billion pounds) of	
tant property	blast furnace lead bullion produced	
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-51
Primary Lead Blast Furnace Slag Granulation
PSNS

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per billion pounds) of	
tant property	blast furnace lead bullion produced	
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-52 Primary Lead Dross Reverberatory Slag Granulation

Filliary Lead Dross Reverberatory Stag Grandiation		
	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	slag, speiss, or n	natte granulated
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-53 Primary Lead Dross Reverberatory Furnace Wet Air Pollution Control

	Control	
	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	dross reverberatory	furnace production
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-54
Primary Lead Zinc Fuming Wet Air Pollution Control

Iaximum for
onthly average
ion pounds) of
on produced
0.000
0.000

Table 7-55
Primary Lead Hard Lead Refining Slag Granulation
PSNS

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	hard lead	produced
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-56 Primary Lead Hard Lead Refining Wet Air Pollution Control

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	hard lead	produced
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-57 Primary Lead Facility Washdown

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	
tant property	lead bullion	produced
Lead	0.000	0.000
Zinc	0.000	0.000

Table 7-58 Primary Lead Employe Handwash

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	lead bullion produced	
Lead	0.924	0.429
Zinc	3.366	1.386

Table 7-59
Primary Lead Respirator Wash

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	lead bullion	produced
Lead	1.484	0.689
Zinc	5.406	2.226

Table 7-60 Primary Lead Laundering of Uniforms

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kkg (pounds per	billion pounds) of
tant property	lead bullion	produced
Lead	4.340	2.015
Zinc	15.810	6.510

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter VIII — Primary Zinc

NR 274.08 Applicability; description of the primary zinc subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of primary zinc by either electrolytic or pyrolytic means.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.082 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 8-1 Primary Zinc BPT Effluent Limitations

2.1	Billiaent Billiatation	<u> </u>
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	kg/kkg (pounds pe	er 1,000 pounds) of
property	zinc	metal
Total suspended solids	0.42	0.21
Arsenic	0.0016	0.0008
Cadmium	0.008	0.004
Selenium	0.08	0.04
Zinc	0.08	0.04
pН	(1)	(1)

⁽¹⁾ Within the range of 6.0 to 9.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.083 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 8-2
Primary Zinc Zinc Reduction Furnace Wet Air Pollution
Control

Collifor		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	zinc reduced	
Cadmium	0.334	0.134
Copper	2.135	1.018
Lead	0.467	0.217
Zinc	1.702	0.701

Table 8-3 Primary Zinc Preleach of Zinc Concentrates

Timaly Zine Treleach of Zine Concentrates		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	concentrate leached	
Cadmium	0.180	0.072
Copper	1.153	0.550
Lead	0.252	0.117
Zinc	0.919	0.378

Table 8-4 Primary Zinc Leaching Wet Air Pollution Control

Timary Zine Beaching Wet 7th Tonation Control			
BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day monthly average		
Pollutant or pollu-	Pollutant or pollumg/kg (pounds per million pounds) of		
tant property	zinc processed through leaching		
Cadmium	0.000 0.000		
Copper	0.000	0.000	
Lead	0.000	0.000	
Zinc	0.000	0.000	

Table 8-5 Primary Zinc Electrolyte Bleed Wastewater

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	Pollutant or pollumg/kg (pounds per million pounds) of	
tant property	cathode zinc produced	
Cadmium	0.086	0.035
Copper	0.553	0.264
Lead	0.121	0.056
Zinc	0.441	0.182

Table 8-6
Primary Zinc Cathode and Anode Wash Wastewater

BAT Effluent Limitations			
Maximum for any 1 Maximum for			
day monthly average			
Pollutant or pollu-	Pollutant or pollumg/kg (pounds per million pounds) of		
tant property	cathode zinc produced		
Cadmium	0.150	0.060	
Copper	0.961	0.458	
Lead	0.210	0.098	
Zinc	0.766	0.315	

Table 8-7
Primary Zinc Casting Wet Air Pollution Control

BAT Effluent Limitations			
Maximum for any 1 Maximum for		Maximum for	
	day	monthly average	
Pollutant or pollu-	Pollutant or pollumg/kg (pounds per million pounds) of		
tant property	zinc cast		
Cadmium	0.051	0.021	
Copper	0.329	0.157	
Lead	0.072	0.033	
Zinc	0.262	0.108	

Table 8-8
Primary Zinc Casting Contact Cooling

Timary Zine Casting Contact Cooling		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day monthly average	
Pollutant or pollu-	lu- mg/kg (pounds per million pounds) of	
tant property	zinc cast	
Cadmium	0.036	0.014
Copper	0.232	0.110
Lead	0.051	0.024
Zinc	0.185	0.076

Table 8-9 Primary Zinc Cadmium Plant Wastewater

BAT Effluent Limitations		
	Maximum for any 1 Maximum for	
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	cadmium produced	
Cadmium	1.234	0.494
Copper	7.899	3.765
Lead	1.728	0.802
Zinc	6.295	2.592

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.084 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 8-10 Primary Zinc Zinc Reduction Furnace Wet Air Pollution Control

	Control	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of zinc	reduced
Cadmium	0.334	0.134
Copper	2.135	1.018
Lead	0.467	0.217
Zinc	1.702	0.701
Total suspended solids	25.020	20.020
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 8-11 Primary Zinc Preleach of Zinc Concentrates

Timary Zine Treleuen of Zine Concentrates		
NSPS		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of concentrate leached	
Cadmium	0.180	0.072
Copper	1.153	0.550
Lead	0.252	0.117
Zinc	0.919	0.378
Total suspended solids	13.520	10.810
pН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 8-12 Primary Zinc Leaching Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of zinc processes	d through leaching
Cadmium	0.000	0.000
Copper	0.000	0.000
Lead	0.000	0.000
Zinc	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 8-13 Primary Zinc Electrolyte Bleed Wastewater

Tilliary Zilic Electrolyte Bleed Wastewater		
NSPS		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of cathode zinc produced	
Cadmium	0.086	0.035
Copper	0.553	0.264
Lead	0.121	0.056
Zinc	0.441	0.182
Total suspended solids	6.480	5.184
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 8-14 Primary Zinc Cathode and Anode Wash Wastewater

Maximum for monthly average
monthly average
per million pounds)
zinc produced
0.060
0.458
0.098
0.315
9.012
(1)

 $^{^{\}left(1\right)}$ Within the range of 7.5 to 10.0 at all times.

Table 8-15 Primary Zinc Casting Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of zi	nc cast
Cadmium	0.051	0.021
Copper	0.329	0.157
Lead	0.072	0.033
Zinc	0.262	0.108
Total suspended solids	3.855	3.084
pH (I) Within the many of 7.5 to 10.0	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 8-16 Primary Zinc Casting Contact Cooling

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of zii	nc cast
Cadmium	0.036	0.014
Copper	0.232	0.110
Lead	0.051	0.024
Zinc	0.185	0.076
Total suspended solids	2.715	2.172
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 8-17 Primary Zinc Cadmium Plant Wastewater

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of cadmiu	m produced
Cadmium	1.234	0.494
Copper	7.899	3.765
Lead	1.728	0.802
Zinc	6.295	2.592
Total suspended solids	92.570	74.050
pH	(1)	(1)

NR 274.085 Pretreatment standards for existing sources. Except as provided in ss. NR 211.13 and 211.14, any new [existing] source subject to the primary zinc subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the following PSES:

Table 8-18 Primary Zinc Zinc Reduction Furnace Wet Air Pollution

Control		
	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	zinc reduced	
Cadmium	0.334	0.134
Zinc	1.702	0.701

⁽i) Within the range of 7.5 to 10.0 at all times. **History:** Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Table 8-19 Primary Zinc Preleach of Zinc Concentrates

Timaly Zine Treleach of Zine concentrates		
PSES		
•	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	concentrat	e leached
Cadmium	0.180	0.072
Zinc	0.919	0.378

Table 8-20
Primary Zinc Leaching Wet Air Pollution Control

	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per zinc processed the	million pounds) of
tant property	zinc processed the	hrough leaching
Cadmium	0.000	0.000
Zinc	0.000	0.000

Table 8-21 Primary Zinc Electrolyte Bleed Wastewater

Timary Zine Electrolyte Bleed Wastewater		
PSES		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property		
Cadmium	0.086	0.035
Zinc	0.441	0.182

Table 8-22 Primary Zinc Cathode and Anode Wash Wastewater

	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	cathode zinc produced	
Cadmium	0.150	0.060
Zinc	0.766	0.315

Table 8-23 Primary Zinc Casting Wet Air Pollution Control

Timary Zine Custing Wet 7th Tonution Control		
PSES		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	ant property zinc cast	
Cadmium	0.051	0.021
Zinc	0.262	0.108

Table 8-24 Primary Zinc Casting Contact Cooling

	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	zinc cast	
Cadmium	0.036	0.014
Zinc	0.185	0.076

Table 8-25 Primary Zinc Cadmium Plant Wastewater

	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	cadmium produced	
Cadmium	1.234	0.494
Zinc	6.295	2.592

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.086 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the standards set forth in s. NR 274.085.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter IX — Metallurgical Acid Plants

NR 274.09 Applicability; description of the metallurgical acid plants subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the byproduct sulfuric acid at primary copper smelters, primary zinc facilities, primary lead facilities, and primary molybdenum facilities, including any associated air pollution control or gas conditioning systems for sulfur dioxide off-gasses from pyrometallurgical acid plants operations.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.092 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 9-1 Metallurgical Acid Plants

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of 100% sulfur	ric acid capacity
Cadmium	0.180	0.090
Copper	5.000	2.000
Lead	1.800	0.790
Zinc	3.600	0.900
Fluoride (1)	212.800	121.000
Molybdenum (1)	40.180	20.790
Total suspended solids	304.000	152.000
pН	(2)	(2)

⁽¹⁾ For molybdenum acid plants only

(2) Within the range of 6.0 to 9.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.093 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 9-2 Metallurgical Acid Plants

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property		
Arsenic	3.550	1.584
Cadmium	0.511	0.204
Copper	3.269	1.558
Lead	0.715	0.332
Zinc	2.605	1.073
Fluoride (1)	89.390	50.820

⁽¹⁾ For molybdenum acid plants only.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.094 New source performance standards. Any new source subject to this subchapter shall achieve the following standards:

Table 9-3
Metallurgical Acid Plants

Wietanurgical Acid Halits		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of 100% sulfu	ric acid capacity
Arsenic	3.550	1.584
Cadmium	0.511	0.204
Copper	3.269	1.558
Lead	0.715	0.332
Zinc	2.605	1.073
Fluoride (1)	89.390	50.820
Total suspended solids	38.310	30.650
pH .	(2)	(2)

⁽¹⁾ For molybdenum acid plants only.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.095 Pretreatment standards for existing sources. Except as provided in ss. NR 211.13 and 211.14, any new [existing] source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the following PSES:

Table 9-4
Metallurgical Acid Plants

Wictandigical Acid Flants			
	PSES		
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	100% sulfuric	acid capacity	
Cadmium	0.511	0.204	
Zinc	2.605	1.073	

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.096 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.093.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter X — Primary Tungsten

NR 274.10 Applicability; description of the primary tungsten subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of tungsten at primary tungsten facilities.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.102 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 10-1 Primary Tungsten Tungstic Acid Rinse

BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds per million pounds)		
property	of tungstic acid produced		
Lead	17.230	8.205	
Zinc	59.900	25.030	
Ammonia (as N)	5,469.000	2,404.000	
Total suspended solids	1,682.000	800.000	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-2 Primary Tungsten Acid Leach Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tungstic acid produced	
Lead	15.040	7.162
Zinc	52.280	21.840
Ammonia (as N)	4,773.000	2,098.000
Total suspended solids	1,468.000	698.300
pН	(1)	(1)
Lead Zinc Ammonia (as N) Total suspended solids	15.040 52.280 4,773.000 1,468.000	7.162 21.840 2,098.000 698.300

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-3 Primary Tungsten Alkali Leach Wash

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of sodium tungstate produced	
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

⁽²⁾ Within the range of 6.0 to 9.0 at all times.

Table 10-4 Primary Tungsten Alkali Leach Wash Condensate

Timary rangeton riman Boath Wash Condensate			
BPT Effluent Limitations			
Maximum for Maximum for			
	any 1 day	monthly average	
Pollutant or pollutant		er million pounds)	
property	of sodium tungstate produced		
Lead	8.057	3.837	
Zinc	28.011	11.700	
Ammonia (as N)	2,557.000	1,124.000	
Total suspended solids	786.200	374.100	
pH .	(1)	(1)	

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-5 Primary Tungsten Ion-Exchange Raffinate Commingled With Other Process or Nonprocess Waters

BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of ammonium to	ungstate produced	
Lead	37.160	17.700	
Zinc	129.200	53.970	
Ammonia (as N)	11,790.000	5,185.000	
Total suspended solids	3,627.000	1,726.800	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-6 Primary Tungsten Ion-Exchange Raffinate Not Commingled

With Other Process or Nonprocess Waters **BPT Effluent Limitations** Maximum for Maximum for any 1 day monthly average Pollutant or pollutant mg/kg (pounds per million pounds) property of ammonium tungstate produced Lead 37.160 17.700 53.970 129.200 Zinc Ammonia (as N) (1) 11,790,000 5,185,000 Total suspended solids 3,627.000 1,726.800

Table 10-7 Primary Tungsten Calcium Tungstate Precipitate Wash

BPT Effluent Limitations		
	Maximum for Maximum for	
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of calcium tungstate produced	
Lead	31.000	14.760
Zinc	107.800	45.020
Ammonia (as N)	9,838.000	4,325.000
Total suspended solids	3,036.000	1,439.000
pН	(1)	(1)

Within the range of 7.0 to 10.0 at all times.

Table 10-8 Primary Tungsten Crystallization and Drying of Ammonium Paratungstate

i aratungstate			
BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
mg/kg (pounds per million pounds)			
Pollutant or pollutant	of ammonium paratungstate		
property	produced		
Lead	0.000	0.000	
Zinc	0.000	0.000	
Ammonia (as N)	0.000	0.000	
Total suspended solids	0.000	0.000	
pН	(1)	(1)	

 $^{^{(1)}}$ Within the range of 7.0 to 10.0 at all times.

Table 10-9
Primary Tungsten Ammonium Paratungstate Conversion to Oxides Wet Air Pollution Control

ides wet All I ollution Collifor		
BPT Effluent Limitations		
Maximum for Maximum for		
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tungsten oxide produced	
Lead	11.600	5.300
Zinc	40.320	16.380
Ammonia (as N)	3,681.000	1,618.000
Total suspended solids	1,132.000	538.500
pН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-10

Primary Tungsten Ammonium Paratungstate Conversion to Oxides Water of Formation

BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of tungsten oxide produced		
Lead	0.026	0.013	
Zinc	0.092	0.038	
Ammonia (as N)	8.398	3.692	
Total suspended solids	2.583	1.229	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-11 Primary Tungsten Reduction to Tungsten Wet Air Pollution Control

Control		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of tungsten metal produced	
Lead	12.940	6.161
Zinc	44.970	18.790
Ammonia (as N)	4,106.000	1,805.000
Total suspended solids	1,263.000	600.700
рН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

pH

(1) The limitation for ammonia does not apply if the mother liquor feed to the ion exchange process or the raffinate from the ion exchange process contains sulfates at concentrations exceeding 1,000 mg/l, this mother liquor or raffinate is treated by ammonia stripping, and this mother liquor or raffinate is not commingled with any other process or nonprocess waters prior to steam stripping for ammonia removal.

⁽²⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-12 Primary Tungsten Reduction to Tungsten Water of Formation

. J . G			
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of tungsten n	netal produced	
Lead	0.205	0.098	
Zinc	0.714	0.298	
Ammonia (as N)	65.190	28.660	
Total suspended solids	20.050	9.536	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-13 Primary Tungsten Tungsten Powder Acid Leach and Wash

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of tungsten metal produced		
Lead	1.008	0.480	
Zinc	3.504	1.464	
Ammonia (as N)	319.900	140.700	
Total suspended solids	98.400	46.800	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-14 Primary Tungsten Molybdenum Sulfide Precipitation Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of molybdenum s	sulfide precipitated	
Lead	0.000	0.000	
Zinc	0.000	0.000	
Ammonia (as N)	0.000	0.000	
Total suspended solids	0.000	0.000	
pН	(1)	(1)	
(4)			

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.103 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 10-15 Primary Tungsten Tungstic Acid Rinse

rungstie rieta rense			
BAT Effluent Limitations			
Maximum for Maximum for			
	any 1 day	monthly average	
Pollutant or pollumg/kg (pounds per million pounds) of			
tant property	tungstic acid produced		
Lead	11.490	5.333	
Zinc	41.850	17.230	
Ammonia (as N)	5,469.000	2,404.000	

Table 10-16
Primary Tungsten
Acid Leach Wet Air Pollution Control

BAT Effluent Limitations		
Maximum for Maximum for		Maximum for
	any 1 day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	tungstic acid produced	
Lead	1.003	0.466
Zinc	3.653	1.504
Ammonia (as N)	477.400	209.900

Table 10-17 Primary Tungsten Alkali Leach Wash

BAT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	sodium tungstate produced	
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 10-18 Primary Tungsten Alkali Leach Wash Condensate

BAT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollu-	mg/kg (pounds per million pounds) of		
tant property	sodium tungstate produced		
Lead	5.372	2.494	
Zinc	19.570	8.057	
Ammonia (as N)	2,557.000	1,124.000	

Table 10-19 Primary Tungsten Ion-Exchange Raffinate

Commingled With Other Process or Nonprocess Waters

BAT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollu-	mg/kg (pounds per	r million pounds) of
tant property	ammonium tungstate produced	
Lead	24.780	11.500
Zinc	90.240	37.160
Ammonia (as N)	11,790.000	5,185.000

Table 10-20 Primary Tungsten Ion-Exchange Raffinate

Not Commingled With Other Process or Nonprocess Waters

BAT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of ammonium tu	ingstate produced	
Lead	24.780	11.500	
Zinc	90.240	37.160	
Ammonia (as N) (1)	11,790.000	5,185.000	

⁽¹⁾ The limitation for ammonia does not apply if the mother liquor feed to the ion exchange process or the raffinate from the ion exchange process contains sulfates at concentrations exceeding 1,000 mg/l, this mother liquor or raffinate is treated by ammonia stripping, and this mother liquor or raffinate is not commingled with any other process or nonprocess waters prior to steam stripping for ammonia removal.

Table 10-21 Primary Tungsten Calcium Tungstate Precipitate Wash

Calcium Tungstate Frecipitate Wash		
BAT Effluent Limitations		
Maximum for Maximum for		
	any 1 day	monthly average
Pollutant or pollu-	Pollutant or pollumg/kg (pounds per million pounds) of	
tant property	calcium tungstate produced	
Lead	20.670	9.594
Zinc	75.280	31.000
Ammonia (as N)	9,838.000	4,325.000

Table 10-22 Primary Tungsten

Crystallization and Drying of Ammonium Paratungstate

BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
Pollutant or pollu-	- mg/kg (pounds per million pounds) of		
tant property	ammonium paratungstate produced		
Lead	0.000	0.000	
Zinc	0.000	0.000	
Ammonia (as N)	0.000	0.000	

Table 10-23 Primary Tungsten

Ammonium Paratungstate Conversion to Oxides Wet Air Pollution Control

BAT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollu-	mg/kg (pounds per million pounds) of		
tant property	tungsten oxide produced		
Lead	0.773	0.359	
Zinc	2.817	1.160	
Ammonia (as N)	368.200	161.900	

Table 10-24
Primary Tungsten
Ammonium Paratungstate Conversion to Oxides
Water of Formation

BAT Effluent Limitations			
Maximum for Maximum for			
	any 1 day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	r million pounds) of	
tant property	tungsten oxide produced		
Lead	0.018	0.008	
Zinc	0.064	0.026	
Ammonia (as N)	8.398	3.692	

Table 10-25
Primary Tungsten
Reduction to Tungsten Wet Air Pollution Control

BAT Effluent Limitations		
Maximum for Maximum for		
	any 1 day	monthly average
Pollutant or pollu-	mg/kg (pounds per	r million pounds) of
tant property	tungsten metal produced	
Lead	0.862	0.406
Zinc	3.142	1.294
Ammonia (as N)	410.600	180.500

Table 10-26
Primary Tungsten
Reduction to Tungsten Water of Formation

BAT Effluent Limitations		
Maximum for Maximum for		Maximum for
	any 1 day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	tungsten metal produced	
Lead	0.137	0.064
Zinc	0.499	0.205
Ammonia (as N)	65.190	28.660

Table 10-27 Primary Tungsten Tungsten Powder Acid Leach and Wash

or	
۱r	
л	
ige	
mg/kg (pounds per million pounds) of	
tungsten metal produced	
_	

Table 10-28
Primary Tungsten
Molybdenum Sulfide Precipitation
Wet Air Pollution Control

BAT Effluent Limitations		
Maximum for Maximum for		
any 1 day monthly average		
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	molybdenum sulfide precipitated	
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.104 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

> Table 10-29 Primary Tungsten Tungstic Acid Rinse

1.00		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		r million pounds) of
property	tungstic acid produced	
Lead	11.490	5.333
Zinc	41.850	17.230
Ammonia (as N)	5,469.000	2,404.000
Total suspended solids	615.500	492.300
pН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-30 Primary Tungsten Acid Leach Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tungstic acid produced	
Lead	1.003	0.466
Zinc	3.653	1.504
Ammonia (as N)	477.400	209.900
Total suspended solids	53.720	42.970
pН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-31 Primary Tungsten Alkali Leach Wash

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-32 Primary Tungsten Alkali Leach Wash Condensate

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of sodium tungstate produced	
Lead	5.372	2.494
Zinc	19.570	8.057
Ammonia (as N)	2,557.000	1,124.000
Total suspended solids	287.800	229.600
pН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-33 Primary Tungsten Ion-Exchange Raffinate

Commingled With Other Process or Nonprocess Waters

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of ammonium to	ungstate produced
Lead	24.780	11.500
Zinc	90.240	37.160
Ammonia (as N)	11,790.000	5,185.000
Total suspended solids	1,327.000	1,062.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-34 Primary Tungsten Ion-Exchange Raffinate

Not Commingled With Other Process or Nonprocess Waters

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of ammonium to	ungstate produced
Lead	24.780	11.500
Zinc	90.240	37.160
Ammonia (as N) (1)	11,790.000	5,185.000
Total suspended solids	1,327.000	1,062.000
pН	(2)	(2)

⁽¹⁾ The limitation for ammonia does not apply if the mother liquor feed to the ion exchange process or the raffinate from the ion exchange process contains sulfates at concentrations exceeding 1,000 mg/l, this mother liquor or raffinate is treated by ammonia stripping, and this mother liquor or raffinate is not commingled with any other process or nonprocess waters prior to steam stripping for ammonia

Table 10-35
Primary Tungsten
Calcium Tungstate Precipitate Wash

Calcium Tungstate Frecipitate Wash			
NSPS			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds per million pounds)		
property	of calcium tungstate produced		
Lead	20.670	9.594	
Zinc	75.280	31.000	
Ammonia (as N)	9,838.000	4,325.000	
Total suspended solids	1,107.000	885.600	
рН	(1)	(1)	

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-36
Primary Tungsten
Crystallization and Drying of Ammonium Paratungstate

NSPS		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of ammoniun	n paratungstate
property	produced	
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

⁽²⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-37
Primary Tungsten
Ammonium Paratungstate Conversion to Oxides
Wet Air Pollution Control

wet All Tollution Collifor		
NSPS		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of tungsten of	xide produced
Lead	0.773	0.359
Zinc	2.817	1.160
Ammonia (as N)	368.200	161.900
Total suspended solids	41.430	33.150
рН	(1)	(1)

 $^{^{\}left(1\right)}$ Within the range of 7.0 to 10.0 at all times.

Table 10-38
Primary Tungsten
Ammonium Paratungstate Conversion to Oxides
Water of Formation

Name		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of tungsten oxide produced	
Lead	0.018	0.008
Zinc	0.064	0.026
Ammonia (as N)	8.398	3.692
Total suspended solids	0.945	0.756
pH	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-39
Primary Tungsten
Reduction to Tungsten Wet Air Pollution Control

reduction to rangeten wet im I onation control		
NSPS		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tungsten n	netal produced
Lead	0.862	0.400
Zinc	3.142	1.294
Ammonia (as N)	410.600	180.500
Total suspended solids	46.200	36.960
pН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-40 Primary Tungsten Reduction to Tungsten Water of Formation

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tungsten n	netal produced
Lead	0.137	0.064
Zinc	0.499	0.205
Ammonia (as N)	65.190	28.660
Total suspended solids	7.335	5.868
рН	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-41
Primary Tungsten
Tungsten Powder Acid Leach and Wash

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of tungsten n	netal produced
Lead	0.672	0.312
Zinc	2.448	1.008
Ammonia (as N)	319.900	140.700
Total suspended solids	36.000	28.800
pH (David of Section	(1)	(1)

⁽¹⁾ Within the range of 7.0 to 10.0 at all times.

Table 10-42 Primary Tungsten Molybdenum Sulfide Precipitation Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of molybdenum s	sulfide precipitated
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
pH	(1)	(1)

(1) Within the range of 7.0 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.105 Pretreatment standards for existing sources. Except as provided in ss. NR 211.13 and 211.14, any new [existing] source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.103.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.106 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.103.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XI — Primary Columbium-Tantalum

NR 274.11 Applicability; description of the primary columbium-tantalum subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of columbium or tantalum by primary columbium-tantalum facilities.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.112 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 11-1
Primary Columbium-Tantalum
Concentrate Digestion Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of concentrate digested		
Lead	2.612	1.244	
Zinc	9.080	3.794	
Ammonia (as N)	829.000	364.500	
Fluoride	217.700	124.400	
Total suspended solids	255.000	121.300	
pH	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 11-2 Primary Columbium-Tantalum Solvent Extraction Raffinate

BPT Effluent Limitations		
Maximum for Maximum for		
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of concent	rate digested
Lead	3.888	1.851
Zinc	13.520	5.647
Ammonia (as N)	1,233.000	542.500
Fluoride	324.000	185.100
Total suspended solids	379.500	189.500
рH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 11-3 Primary Columbium-Tantalum Solvent Extraction Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	per million pounds)
property	of concent	rate digested
Lead	1.032	0.491
Zinc	3.586	1.498
Ammonia (as N)	327.400	143.900
Fluoride	85.960	49.120
Total suspended solids	100.700	47.890
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 11-4
Primary Columbium-Tantalum
Precipitation and Filtration

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of concentrate digested		
Lead	5.750	2.738	
Zinc	19.990	8.350	
Ammonia (as N)	1,825.000	802.200	
Fluoride	479.100	273.800	
Total suspended solids	561.300	267.000	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 11-5
Primary Columbium-Tantalum
Precipitation and Filtration Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of concentrate digested	
Lead	26.680	12.700
Zinc	92.730	38.740
Ammonia (as N)	8,466.000	3,722.000
Fluoride	2,223.000	1,270.000
Total suspended solids	2,604.000	1,239.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 11-6 Primary Columbium-Tantalum Tantalum Salt Drying

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of tantalu	m salt dried
Lead	25.430	12.110
Zinc	88.390	36.930
Ammonia (as N)	8,070.000	3,548.000
Fluoride	2,119.000	1,211.000
Total suspended solids	2,482.000	1,181.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 11-7 Primary Columbium-Tantalum Oxides Calcining Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of columbium-tar	ntalum oxide dried
Lead	16.140	7.685
Zinc	56.100	23.440
Ammonia (as N)	5,122.000	2,252.000
Fluoride	1,345.000	768.500
Total suspended solids	1,576.000	749.200
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 11-8 Primary Columbium-Tantalum Reduction of Tantalum Salt to Metal

BPT Effluent Limitations		
	Maximum for any	Maximum for
	1 day	monthly average
Pollutant or pollutant	mg/kg (pounds pe	
property	of tantalum salt reduced	
Lead	69.750	33.220
Zinc	242.500	101.300
Ammonia (as N)	22,140.000	9,732.000
Fluoride	5,813.000	3,322.000
Total suspended solids	6,809.000	3,239.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 11-9
Primary Columbium-Tantalum
Reduction of Tantalum Salt to Metal
Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tantalum	salt reduced
Lead	0.858	0.409
Zinc	2.983	1.246
Ammonia (as N)	272.400	119.700
Fluoride	71.510	40.860
Total suspended solids	83.770	39.840
pH	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 11-10 Primary Columbium-Tantalum Tantalum Powder Wash

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tantalum p	owder washed
Lead	8.582	4.087
Zinc	29.830	12.470
Ammonia (as N)	2,724.400	1,198.000
Fluoride	715.200	408.700
Total suspended solids	837.800	398.500
pН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 11-11 Primary Columbium-Tantalum Consolidation and Casting Contact Cooling

BPT Effluent Limitations		
Maximum for Maximum		Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of columbium of	r tantalum cast or
property	consolidated	
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000
Fluoride	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.113 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 11-12
Primary Columbium-Tantalum
Concentrate Digestion Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	
tant property	concentrate digested	
Lead	0.174	0.081
Zinc	0.635	0.261
Ammonia (as N)	82.910	36.450
Fluoride	21.770	12.440

Table 11-13 Primary Columbium-Tantalum Solvent Extraction Raffinate

BAT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	concentrate digested	
Lead	2.592	1.203
Zinc	9.442	3.888
Ammonia (as N)	1,233.000	542.500
Fluoride	324.000	185.100

Table 11-14
Primary Columbium-Tantalum
Solvent Extraction Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollu-	mg/kg (pounds per	r million pounds) of
tant property	concentrate digested	
Lead	0.069	0.032
Zinc	0.251	0.103
Ammonia (as N)	32.790	14.420
Fluoride	8.610	4.920

Table 11-15
Primary Columbium-Tantalum
Precipitation and Filtration

BAT Effluent Limitations		
		Maximum for
	any 1 day	monthly average
Pollutant or	mg/kg (pounds per n	nillion pounds) of
pollutant property	concentrate digested	
Lead	3.833	1.780
Zinc	13.960	5.750
Ammonia (as N)	1,825.000	802.200
Fluoride	479.100	273.800

Table 11-16
Primary Columbium-Tantalum
Precipitation and Filtration Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	concentrate digested	
Lead	1.778	0.826
Zinc	6.478	2.668
Ammonia (as N)	846.600	372.200
Fluoride	222.300	127.000

Table 11-17 Primary Columbium-Tantalum Tantalum Salt Drying

Tuntaram Sant Bijing		
BAT Effluent Limitations		
	Maximum for any 1 Maximum for	
	day	monthly average
Pollutant or pollumg/kg (pounds per million pounds) of		
tant property	tantalum salt dried	
Lead	16.950	7.871
Zinc	61.750	25.430
Ammonia (as N)	8,070.000	3,548.000
Fluoride	2,119.000	1,211.000
, ,	,	,

Table 11-18 Primary Columbium-Tantalum Oxides Calcining Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	columbium-tantalum oxide dried	
Lead	1.076	0.500
Zinc	3.919	1.614
Ammonia (as N)	512.200	225.200
Fluoride	134.500	76.840

Table 11-19 Primary Columbium-Tantalum Reduction of Tantalum Salt to Metal

BAT Effluent Limitations		
	Maximum for any 1 Maximum for	
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	tantalum salt reduced	
Lead	46.500	21.590
Zinc	169.400	69.750
Ammonia (as N)	22,140.000	9,732.000
Fluoride	5,813.000	3,322.000

Table 11-20 Primary Columbium-Tantalum Reduction of Tantalum Salt to Metal Wet Air Pollution Control

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
day monthly average		
Pollutant or pollumg/kg (pounds per million pounds) of		
tant property	tantalum salt reduced	
Lead	0.572	0.266
Zinc	2.084	0.858
Fluoride	71.510	40.860

Table 11-21 Primary Columbium-Tantalum Tantalum Powder Wash

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	tantalum powder washed	
Lead	5.721	2.656
Zinc	20.840	8.582
Ammonia (as N)	2,724.400	1,198.000
Fluoride	715.200	408.700

Table 11-22 Primary Columbium-Tantalum Consolidation and Casting Contact Cooling

BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
	mg/kg (pounds per million pounds) of		
Pollutant or pollu-	columbium or tantalum cast or		
tant property	consolidated		
Lead	0.000	0.000	
Zinc	0.000	0.000	
Ammonia (as N)	0.000	0.000	
Fluoride	0.000	0.000	

NR 274.114 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 11-23
Primary Columbium-Tantalum
Concentrate Digestion Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of concentrate digested	
Lead	0.174	0.081
Zinc	0.635	0.261
Ammonia (as N)	82.910	36.450
Fluoride	21.770	12.440
Total suspended solids	9.330	7.464
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 11-24 Primary Columbium-Tantalum Solvent Extraction Raffinate

	NSPS		
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of concentrate digested		
Lead	2.592	1.203	
Zinc	9.442	3.888	
Ammonia (as N)	1,233.000	542.500	
Fluoride	324.000	185.100	
Total suspended solids	138.900	111.100	
pН	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times.

Table 11-25 Primary Columbium-Tantalum Solvent Extraction Wet Air Pollution Control

Borrent Extraction Wet 7th Tollation Control		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of concentrate digested	
Lead	0.069	0.032
Zinc	0.251	0.103
Ammonia (as N)	32.790	14.420
Fluoride	8.610	4.920
Total suspended solids	3.690	2.952
pH .	(1)	(1)
(I) xxx: -1	11	

(1) Within the range of 7.5 to 10.0 at all times.

Table 11-26
Primary Columbium-Tantalum
Precipitation and Filtration

recipitation and ritiation			
	NSPS		
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant		er million pounds)	
property	of concentrate digested		
Lead	3.833	1.780	
Zinc	13.960	5.750	
Ammonia (as N)	1,825.000	802.200	
Fluoride	479.100	273.800	
Total suspended solids	205.400	164.300	
рН	(1)	(1)	

 $^{^{\}left(1\right)}$ Within the range of 7.5 to 10.0 at all times.

Table 11-27
Primary Columbium-Tantalum
Precipitation and Filtration Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of concentrate digested	
Lead	1.778	0.826
Zinc	6.478	2.668
Ammonia (as N)	846.600	372.200
Fluoride	222.300	127.000
Total suspended solids	95.270	76.210
pН	(1)	(1)

 $^{^{\}left(1\right)}$ Within the range of 7.5 to 10.0 at all times.

Table 11-28 Primary Columbium-Tantalum Tantalum Salt Drying

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tantalum salt dried	
Lead	16.950	7.871
Zinc	61.750	25.430
Ammonia (as N)	8,070.000	3,548.000
Fluoride	2,119.000	1,211.000
Total suspended solids	908.200	726.500
pH	(1)	(1)

 $^{^{\}left(1\right)}$ Within the range of 7.5 to 10.0 at all times.

Table 11-29 Primary Columbium-Tantalum Oxides Calcining Wet Air Pollution Control

	NSPS		
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of columbium-tar	ntalum oxide dried	
Lead	1.076	0.500	
Zinc	3.919	1.614	
Ammonia (as N)	512.200	225.200	
Fluoride	134.500	76.840	
Total suspended solids	57.630	46.110	
рН	(1)	(1)	

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 11-30 Primary Columbium-Tantalum Reduction of Tantalum Salt to Metal

	NSPS	
	Maximum for any	Maximum for
	1 day	monthly average
Pollutant or pollutant	mg/kg (pounds per	r million pounds)
property	of tantalum s	salt reduced
Lead	46.500	21.590
Zinc	169.400	69.750
Ammonia (as N)	22,140.000	9,732.000
Fluoride	5,813.000	3,322.000
Total suspended solids	2,491.000	1,993.000
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 11-31
Primary Columbium-Tantalum
Reduction of Tantalum Salt to Metal
Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tantalum	salt reduced
Lead	0.572	0.266
Zinc	2.084	0.858
Ammonia (as N)	272.400	119.700
Fluoride	71.510	40.860
Total suspended solids	30.650	24.520
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 11-32 Primary Columbium-Tantalum Tantalum Powder Wash

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tantalum p	owder washed
Lead	5.721	2.656
Zinc	20.840	8.582
Ammonia (as N)	2,724.000	1,198.000
Fluoride	715.200	408.700
Total suspended solids	306.500	245.200
pН	(1)	(1)
(1) Within the range of 7.5 to 10.0 at all times.		

Table 11-33
Primary Columbium-Tantalum
Consolidation and Casting Contact Cooling

Consolidation and Casting Contact Cooling		
NSPS		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of columbium o	r tantalum cast or
property	consolidated	
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000
Fluoride	0.000	0.000
Total suspended solids	0.000	0.000
pH	(1)	(1)
-	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.115 Pretreatment standards for existing sources. Except as provided in ss. NR 211.13 and 211.14, any new [existing] source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.113.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.116 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.113.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XII — Secondary Silver

NR 274.12 Applicability; description of the secondary silver subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of silver from secondary silver facilities processing photographic and nonphotographic raw materials.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.122 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 12-1 Secondary Silver

Film Stripping			
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/troy ounce o	of silver from film	
property	stripping		
Copper	95.670	50.350	
Zinc	73.510	30.720	
Ammonia (as N)	6,712.000	2,951.000	
Total suspended solids	2,065.000	981.800	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-2 Secondary Silver Film Stripping Wet Air Pollution Control and Precipitation and Filtration of Film Stripping Solutions Wet Air Pollution Control

i onution control			
BPT Effluent Limitations			
Maximum for Maximum for			
	any 1 day	monthly average	
		silver from precipi-	
Pollutant or pollutant	tation and filtrati	on of film stripping	
property	solutions		
Copper	1.843	0.970	
Zinc	1.416	0.592	
Ammonia (as N)	129.300	56.840	
Total suspended solids	39.770	18.920	
На	(1)	(1)	

Within the range of 7.5 to 10.0 at all times.

Table 12-3 Secondary Silver Precipitation and Filtration of Film Stripping Solutions

BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant		_	
property	mg/troy ounce of	silver precipitated	
Copper	109.400	57.570	
Zinc	84.050	35.120	
Ammonia (as N)	7,674.000	3,374.000	
Total suspended solids	2,361.000	1,123.000	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-4 Secondary Silver Precipitation and Filtration of Photographic Solutions

BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant			
property	mg/troy ounce of	silver precipitated	
Copper	50.540	26.600	
Zinc	38.836	16.226	
Ammonia (as N)	3,545.000	1,559.000	
Total suspended solids	1,090.600	518.700	
рН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-5 Secondary Silver Precipitation and Filtration of Photographic Solutions Wet Air Pollution Control

D.D.T.	T1 CC1 . T		
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
	mg/troy ounc	e of silver from	
Pollutant or pollutant	precipitation and	filtration of photo-	
property	graphic solutions		
Copper	23.070	12.140	
Zinc	17.730	7.406	
Ammonia (as N)	1,618.000	711.400	
Total suspended solids	497.800	236.800	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-6 Secondary Silver Electrolytic Refining

Electrony tre retining			
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/troy ounce of	silver from elec-	
property	trolytic refining		
Copper	1.444	0.760	
Zinc	1.110	0.464	
Ammonia (as N)	101.300	44.540	
Total suspended solids	31.160	14.820	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-7 Secondary Silver Furnace Wet Air Pollution Control

Turnate wetting to matter control		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce	of silver roasted,
property	smelted, or dried	
Copper	1.273	0.670
Zinc	0.978	0.409
Ammonia (as N)	89.310	39.260
Total suspended solids	27.470	13.070
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-8 Secondary Silver Leaching

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce of	of silver produced
property	from leaching	
Copper	0.164	0.086
Zinc	0.126	0.053
Ammonia (as N)	11.470	5.040
Total suspended solids	3.526	1.677
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-9 Secondary Silver Leaching Wet Air Pollution Co

Leaching Wet Air Pollution Control and Precipitation of Nonphotographic Solutions Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/troy ounce of	of silver produced	
property	from leaching or precipitated		
Copper	8.417	4.430	
Zinc	6.468	2.703	
Ammonia (as N)	590.500	259.600	
Total suspended solids	181.700	86.390	
pH	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-10 Secondary Silver Precipitation and Filtration of Nonphotographic Solutions

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant			
property	mg/troy ounce of	silver precipitated	
Copper	5.833	3.070	
Zinc	4.482	1.873	
Ammonia (as N)	409.300	179.900	
Total suspended solids	125.900	59.870	
pН	(1)	(1)	

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 12-11 Secondary Silver Floor and Equipment Washdown

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		
property	mg/troy ounce of	f silver production
Copper	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.123 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 12-12 Secondary Silver Film Stripping

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/troy ounce of	silver from film
tant property	stripping	
Copper	64.450	30.720
Zinc	51.360	21.150
Ammonia (as N)	6.712.000	2.951.000

Table 12-13 Secondary Silver

Film Stripping Wet Air Pollution Control and Precipitation and Filtration of Film Stripping Solutions Wet Air Pollution Control

wet in Fondtion Control		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
mg/troy ounce of silver from precipita-		
Pollutant or pollu-	tion and filtration of film stripping	
tant property	solutions	
Copper	1.242	0.592
Zinc	0.990	0.408
Ammonia (as N)	129.300	56.840

Table 12-14 Secondary Silver Precipitation and Filtration of Film Stripping Solutions

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	-	
tant property	mg/troy ounce of s	silver precipitated
Copper	73.690	35.120
Zinc	58.720	24.180

Table 12-15 Secondary Silver

Precipitation and Filtration of Photographic Solutions		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-		
tant property	mg/troy ounce of	silver precipitated
Copper	34.048	16.226
Zinc	27.132	11.172
Ammonia (as N)	3,545.000	1,559.000

Table 12-16 Secondary Silver

Precipitation and Filtration of Photographic Solutions
Wet Air Pollution Control

wet All Tollution Collifor			
BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
mg/troy ounce of silver from precipita-			
Pollutant or pollu-	tion and filtration of photographic		
tant property	solutions		
Copper	15.540	7.706	
Zinc	12.380	5.099	
Ammonia (as N)	1,618.000	711.400	

Table 12-17 Secondary Silver Electrolytic Refining

BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
Pollutant or pollu-	mg/troy ounce of silver from elec-		
tant property	trolytic refining		
Copper	0.973	0.464	
Zinc	0.775	0.319	
Ammonia (as N)	101.300	44.540	

Table 12-18 Secondary Silver Furnace Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/troy ounce of silver roasted, smelted,	
tant property	or dried	
Copper	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 12-19 Secondary Silver Leaching

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/troy ounce of silver produced from	
tant property	leaching	
Copper	0.110	0.053
Zinc	0.088	0.036
Ammonia (as N)	11.470	5.040

Table 12-20 Secondary Silver Leaching Wet Air Pollution Control and Precipitation of Nonphotographic Solutions Wet Air Pollution Control

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/troy ounce of silver produced from	
tant property	leaching or precipitated	
Copper	5.671	2.703
Zinc	4.519	1.861
Ammonia (as N)	590.500	259.600

Table 12-21 Secondary Silver

Precipitation and Filtration of Nonphotographic Solutions		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
day monthly average		
Pollutant or pollu-	mg/troy ounce of silver precipitated	
tant property		
Copper	3.930	1.873
Zinc	3.132	1.290
Ammonia (as N)	409.300	179.900

Table 12-22 Secondary Silver r and Equipment Washdown

Floor and Equipment washdown		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-		
tant property	mg/troy ounce of silver production	
Copper	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.124 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 12-23 Secondary Silver Film Stripping

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce o	of silver from film
property	stripping	
Copper	64.450	30.720
Zinc	51.360	21.150
Ammonia (as N)	6,712.000	2,951.000
Total suspended solids	755.300	604.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-24
Secondary Silver
Film Stripping Wet Air Pollution Control and
Precipitation and Filtration of Film Stripping Solutions
Wet Air Pollution Control

Weet III Tollation College		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
		silver from precipi-
Pollutant or pollutant	tation and filtrati	on of film stripping
property	solutions	
Copper	1.242	0.592
Zinc	0.990	0.408
Ammonia (as N)	129.300	56.840
Total suspended solids	14.550	11.640
PΗ	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-25 Secondary Silver Precipitation and Filtration of Film Stripping Solutions

NSPS

Maximum for any 1 day Maximum for monthly average

Pollutant or pollutant property mg/troy ounce of silver precipitated

Copper 73.690 35.120

Zinc 58.720 24.180

7,674.000

863.600

3,374.000

690.900

Ammonia (as N)

Total suspended solids

Table 12-26 Secondary Silver Precipitation and Filtration of Photographic Solutions

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		
property	mg/troy ounce of	silver precipitated
Copper	34.048	16.226
Zinc	27.132	11.172
Ammonia (as N)	3,545.000	1,559.000
Total suspended solids	399.000	319.200
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-27 Secondary Silver Precipitation and Filtration of Photographic Solutions Wet Air Pollution Control

wet All I ollution Collifor			
	NSPS		
	Maximum for	Maximum for	
	any 1 day	monthly average	
	mg/troy ounce of	silver from precipi-	
Pollutant or pollutant	tation and filtration	on of photographic	
property	solutions		
Copper	15.540	7.406	
Zinc	12.380	5.099	
Ammonia (as N)	1,618.000	711.400	
Total suspended solids	182.100	145.700	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-28 Secondary Silver Electrolytic Refining

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounc	e of silver from
property	electrolytic refining	
Copper	0.973	0.464
Zinc	0.775	0.319
Ammonia (as N)	101.300	44.540
Total suspended solids	11.400	9.120
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-29
Secondary Silver
Furnace Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce of silver roasted,	
property	smelted, or dried	
Copper	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-30 Secondary Silver Leaching

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce of	of silver produced
property	from leaching	
Copper	0.110	0.053
Zinc	0.088	0.036
Ammonia (as N)	11.470	5.040
Total suspended solids	1.290	1.032
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 12-31 Secondary Silver Leaching Wet Air Pollution Control and Precipitation of Nonphotographic Solutions Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		of silver produced
property	from leaching or precipitated	
Copper	5.671	2.703
Zinc	4.519	1.861
Ammonia (as N)	590.500	259.600
Total suspended solids	66.450	53.160
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

 $[\]underbrace{pH}_{\text{(1)}}$ Within the range of 7.5 to 10.0 at all times.

DEPARTMENT OF NATURAL RESOURCES

Table 12-32 Secondary Silver Precipitation and Filtration of Nonphotographic Solutions

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		
property	mg/troy ounce of	silver precipitated
Copper	3.930	1.873
Zinc	3.132	1.290
Ammonia (as N)	409.300	179.900
Total suspended solids	46.050	36.840
pH	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 12-33 Secondary Silver Floor and Equipment Washdown

* *	
NSPS	
Maximum for	Maximum for
any 1 day	monthly average
mg/troy ounce of	f silver production
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
(1)	(1)
	any 1 day mg/troy ounce o 0.000 0.000 0.000 0.000 0.000

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

NR 274.125 Pretreatment standards for existing sources. Except as provided in ss. NR 211.13 and 211.14, any new [existing] source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.123.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.126 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.123.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XIII — Secondary Lead

NR 274.13 Applicability; description of the secondary lead subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of lead by secondary lead facilities.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.132 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 13-1 Secondary Lead Battery Cracking

Butter y Crucking		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead scr	ap produced
Antimony	1.932	0.862
Arsenic	1.407	0.579
Lead	0.283	0.135
Zinc	0.983	0.411
Ammonia (as N)	0.000	0.000
Total suspended solids	27.600	13.130
рН	(1)	(1)
(1) *****		

(1) Within the range of 7.5 to 10.0 at all times.

Table 13-2 Secondary Lead Blast, Reverberatory, or Rotary Furnace Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead produce	ed from smelting
Antimony	7.491	3.341
Arsenic	5.455	2.245
Lead	1.096	0.522
Zinc	3.811	1.592
Ammonia (as N)	0.000	0.000
Total suspended solids	107.000	50.900
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 13-3 Secondary Lead Kettle Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead produc	ed from refining
Antimony	1.129	0.058
Arsenic	0.094	0.039
Lead	0.019	0.009
Zinc	0.066	0.027
Ammonia (as N)	0.000	0.000
Total suspended solids	1.845	0.878
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 13-4 Secondary Lead Lead Paste Desulfurization

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead proce	essed through
	desulfu	ırization
Antimony	0.000	0.000
Arsenic	0.000	0.000
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 13-5 Secondary Lead Casting Contact Cooling

Custing Contact Cooming		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lea	ad cast
Antimony	0.634	0.283
Arsenic	0.462	0.190
Lead	0.093	0.044
Zinc	0.323	0.135
Ammonia (as N)	0.000	0.000
Total suspended solids	9.061	4.310
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 13-6 Secondary Lead Truck Wash

	Truck Wash	
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead produce	ed from smelting
Antimony	0.060	0.027
Arsenic	0.044	0.018
Lead	0.009	0.004
Zinc	0.031	0.013
Ammonia (as N)	0.000	0.000
Total suspended solids	0.861	0.410
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 13-7 Secondary Lead Facility Washdown

Facility Washdown			
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of lead produce	ed from smelting	
Antimony	0.000	0.000	
Arsenic	0.000	0.000	
Lead	0.000	0.000	
Zinc	0.000	0.000	
Ammonia (as N)	0.000	0.000	
Total suspended solids	0.000	0.000	
pH	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 13-8 Secondary Lead Battery Case Classification

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead scr	ap produced
Antimony	0.000	0.000
Arsenic	0.000	0.000
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 13-9 Secondary Lead Employe Handwash

	iproje Hunawasii	
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead produce	ed from smelting
Antimony	0.077	0.035
Arsenic	0.056	0.023
Lead	0.011	0.005
Zinc	0.039	0.016
Ammonia (as N)	0.000	0.000
Total suspended solids	1.107	0.527
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 13-10 Secondary Lead Employe Respirator Wash

BPT Effluent Limitations		
Maximum for Maximum for		
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead produce	ed from smelting
Antimony	0.126	0.056
Arsenic	0.092	0.038
Lead	0.018	0.009
Zinc	0.064	0.027
Ammonia (as N)	0.000	0.000
Total suspended solids	1.804	0.858
pН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 13-11 Secondary Lead Laundering of Uniforms

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of lead produce	ed from smelting
Antimony	0.367	0.164
Arsenic	0.268	0.110
Lead	0.054	0.026
Zinc	0.187	0.078
Ammonia (as N)	0.000	0.000
Total suspended solids	5.248	2.496
pН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

NR 274.133 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 13-12 Secondary Lead Battery Cracking

Battery Cracking			
BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	lead scrap produced		
Antimony	1.299	0.579	
Arsenic	0.936	0.384	
Lead	0.189	0.087	
Zinc	0.687	0.283	
Ammonia (as N)	0.000	0.000	

Table 13-13 Secondary Lead Blast, Reverberatory, or Rotary Furnace Wet Air Pollution Control

BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	lead produced	lead produced from smelting	
Antimony	5.038	2.245	
Arsenic	3.628	1.488	
Lead	0.731	0.339	
Zinc	2.662	1.096	
Ammonia (as N)	0.000	0.000	

Table 13-14 Secondary Lead Kettle Wet Air Pollution Control

BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	lead produced from refining		
Antimony	0.087	0.039	
Arsenic	0.063	0.026	
Lead	0.013	0.006	
Zinc	0.046	0.019	
Ammonia (as N)	0.000	0.000	

Table 13-15 Secondary Lead Lead Paste Desulfurization

Dead I aste D countrillation			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	lead processed through desulfurization		
Antimony	0.000	0.000	
Arsenic	0.000	0.000	
Lead	0.000	0.000	
Zinc	0.000	0.000	
Ammonia (as N)	0.000	0.000	

Table 13-16 Secondary Lead Casting Contact Cooling

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	lead cast	
Antimony	0.042	0.019
Arsenic	0.031	0.013
Lead	0.006	0.003
Zinc	0.022	0.009
Ammonia (as N)	0.000	0.000

Table 13-17 Secondary Lead Truck Wash

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	lead produced from smelting	
Antimony	0.041	0.018
Arsenic	0.029	0.012
Lead	0.006	0.003
Zinc	0.021	0.009
Ammonia (as N)	0.000	0.000

Table 13-18 Secondary Lead Facility Washdown

BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per		
tant property	lead produced from smelting		
Antimony	0.000	0.000	
Arsenic	0.000	0.000	
Lead	0.000	0.000	
Zinc	0.000	0.000	
Ammonia (as N)	0.000	0.000	

Table 13-19 Secondary Lead Battery Case Classification

Buttery cuse classification			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	lead scrap produced		
Antimony	0.000	0.000	
Arsenic	0.000	0.000	
Lead	0.000	0.000	
Zinc	0.000	0.000	
Ammonia (as N)	0.000	0.000	

Table 13-20 Secondary Lead Employe Handwash

Employe Handwash			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	lead produced from smelting		
Antimony	0.052	0.023	
Arsenic	0.038	0.015	
Lead	0.008	0.004	
Zinc	0.028	0.011	
Ammonia (as N)	0.000	0.000	

Table 13-21 Secondary Lead

Employe Respirator Wash				
BA	BAT Effluent Limitations			
	Maximum for any 1 Maximum for			
	day	monthly average		
Pollutant or pollu-	mg/kg (pounds per			
tant property	lead produced	from smelting		
Antimony	0.085	0.038		
Arsenic	0.061	0.025		
Lead	0.012	0.006		
Zinc	0.045	0.018		
Ammonia (as N)	0.000	0.000		

Table 13-22 Secondary Lead Laundering of Uniforms

Laundering of Officials			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	lead produced from smelting		
Antimony	0.247	0.110	
Arsenic	0.178	0.073	
Lead	0.036	0.017	
Zinc	0.131	0.054	
Ammonia (as N)	0.000	0.000	

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.134 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 13-23 Secondary Lead Battery Cracking

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead scr	ap produced
Antimony	1.299	0.579
Arsenic	0.936	0.384
Lead	0.189	0.087
Zinc	0.687	0.283
Ammonia (as N)	0.000	0.000
Total suspended solids	10.100	8.076
pH	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 13-24 Secondary Lead Blast, Reverberatory, or Rotary Furnace Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of lead produce	ed from smelting
Antimony	5.038	2.245
Arsenic	3.628	1.488
Lead	0.731	0.339
Zinc	2.662	1.096
Ammonia (as N)	0.000	0.000
Total suspended solids	39.150	31.320
pН	(1)	(1)

Within the range of 7.5 to 10.0 at all times.

Table 13-25 Secondary Lead Kettle Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead produc	ed from refining
Antimony	0.000	0.000
Arsenic	0.000	0.000
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
pH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 13-26 Secondary Lead Lead Paste Desulfurization

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
		er million pounds)
Pollutant or pollutant	of lead proce	essed through
property	desulfurization	
Antimony	0.000	0.000
Arsenic	0.000	0.000
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 13-27 Secondary Lead Casting Contact Cooling

m for
verage
ounds)
9
3
3
9
0
4

 $\frac{\mathbf{F}}{(1)}$ Within the range of 7.5 to 10.0 at all times.

Table 13-28 Secondary Lead Truck Wash

	Truck wash	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead produce	ed from smelting
Antimony	0.041	0.018
Arsenic	0.029	0.012
Lead	0.006	0.003
Zinc	0.021	0.009
Ammonia (as N)	0.000	0.000
Total suspended solids	0.315	0.252
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 13-29 Secondary Lead Facility Washdown

Tacinty Washaown		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of lead produce	ed from smelting
Antimony	0.000	0.000
Arsenic	0.000	0.000
Lead	0.000	0.000
Zinc	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 13-30 Secondary Lead Battery Case Classification

Cube Clubbiliteur	/
NSPS	
Maximum for	Maximum for
any 1 day	monthly average
	er million pounds)
of lead scr	ap produced
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
(1)	(1)
	NSPS Maximum for any 1 day mg/kg (pounds p of lead scr 0.000 0.000 0.000 0.000 0.000 0.000 0.000

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 13-31 Secondary Lead Employe Handwash

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead produce	ed from smelting
Antimony	0.052	0.023
Arsenic	0.038	0.015
Lead	0.008	0.004
Zinc	0.028	0.011
Ammonia (as N)	0.000	0.000
Total suspended solids	0.405	0.324
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 13-32 Secondary Lead Employe Respirator Wash

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead produce	ed from smelting
Antimony	0.085	0.038
Arsenic	0.061	0.025
Lead	0.012	0.006
Zinc	0.045	0.018
Ammonia (as N)	0.000	0.000
Total suspended solids	0.660	0.528
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 13-33 Secondary Lead Laundering of Uniforms

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of lead produce	ed from smelting
Antimony	0.247	0.110
Arsenic	0.178	0.073
Lead	0.036	0.017
Zinc	0.131	0.054
Ammonia (as N)	0.000	0.000
Total suspended solids	1.920	1.536
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.135 Pretreatment standards for existing sources. Except as provided in ss. NR 211.13 and 211.14, any new [existing] source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.133.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.136 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.133.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XIV — Primary Antimony

NR 274.14 Applicability; description of the primary antimony subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of antimony at primary antimony facilities.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.142 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 14-1 Primary Antimony Sodium Antimonate Autoclave Wastewater

Socialit i intilificultie i intociave vvastevatei		
BPT Effluent Limitations		
Maximum for Maximum for		
	any 1 day	monthly average
mg/kg (pounds per million pounds)		
Pollutant or pollutant	of antimony conta	ained in sodium an-
property	timonate product	
Antimony	44.840	20.000
Arsenic	32.650	14.530
Mercury	3.906	1.562
Total suspended solids	640.600	304.700
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 14-2 Fouled Anolyte BPT Effluent Limitations

	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of antimony m	etal produced by
property	electrowinning	
Antimony	44.840	20.000
Arsenic	32.650	14.530
Mercury	3.906	1.562
Total suspended solids	640.600	304.700
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 14-3
Primary Antimony
Cathode Antimony Wash Water

Cathode	Antimony Wash W	ater	
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
mg/kg (pounds per million pounds)			
Pollutant or pollutant	of antimony m	etal produced by	
property	electrowinning		
Antimony	89.680	40.000	
Arsenic	65.310	29.060	
Mercury	7.812	3.125	
Total suspended solids	1,281.000	609.300	
pН	(1)	(1)	
(1) Within the range of 7.5 to 10.0	at all times.	·	

Within the range of 7.5 to 10.0 at all times. **History:** Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.143 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 14-4 Primary Antimony Sodium Antimonate Autoclave Wastewater

BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
mg/kg (pounds per million pounds) of an-			
Pollutant or pollu-	timony contained in	sodium antimonate	
tant property	prod	uct	
Antimony	30.150	13.440	
Arsenic	21.720	9.687	
Mercury	2.344	0.937	

Table 14-5 Primary Antimony Fouled Anolyte

routed rinory te		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per m	illion pounds) of an-
tant property	timony metal produce	ed by electrowinning
Antimony	30.150	13.440
Arsenic	21.720	9.687
Mercury	2.344	0.937

Table 14-6
Primary Antimony
Cathode Antimony Wash Water

Cathode Antimony wash water			
В	BAT Effluent Limitations		
Maximum for any 1 Maximum for			
day monthly average			
Pollutant or pollu-	u- mg/kg (pounds per million pounds) of an-		
tant property	timony metal produce	ed by electrowinning	
Antimony	60.310	26.870	
Arsenic	43.430	19.370	
Mercury	4.687	1.875	

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.144 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 14-7 Primary Antimony Sodium Antimonate Autoclave Wastewater

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of antimony conta	ained in sodium an-
	timonat	e product
Antimony	30.150	13.440
Arsenic	21.720	9.687
Mercury	2.344	0.937
Total suspended solids	234.400	187.500
pН	(1)	(1)

 $^{^{\}left(1\right)}$ Within the range of 7.5 to 10.0 at all times.

Table 14-8 Primary Antimony Fouled Anolyte

•	oureu rimorjie	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of antimony m	etal produced by
property	electrowinning	
Antimony	30.150	13.440
Arsenic	21.720	9.687
Mercury	2.344	0.937
Total suspended solids	234.400	187.500
pH	(1)	(1)
1		

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 14-9
Primary Antimony
Cathode Antimony Wash Water

Cathode Antimony Wash Water			
NSPS			
	Maximum for	Maximum for	
	any 1 day	monthly average	
		er million pounds)	
Pollutant or pollutant	of antimony m	etal produced by	
property	electrowinning		
Antimony	60.310	26.870	
Arsenic	43.430	19.370	
Mercury	4.687	1.875	
Total suspended solids	468.700	375.000	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

NR 274.146 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.143.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XV — Primary Beryllium

NR 274.15 Applicability; description of the primary beryllium subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of beryllium from primary beryllium facilities processing beryllium ore concentrates or beryllium oxide raw materials.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.151 Cyanide. (1) Periodic analyses for cyanide are not required when both of the following conditions are met:

- (a) The first wastewater sample taken in the calendar year has been analyzed and found to contain less than 0.7% mg/l cyanide; and
- (b) The owner or operator certifies in writing to the department or control authority that cyanide is neither generated nor used in the manufacturing process.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.152 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 15-1 Primary Beryllium Solvent Extraction Raffinate from Bertrandite Ore

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
	mg/kg (pounds p	er million pounds)	
Pollutant or pollutant	of beryllium ca	rbonate produced	
property	from bertrandite ore as beryllium		
Beryllium	2,763.000	1,235.000	
Chromium (total)	988.000	404.300	
Copper	4,267.000	2,246.000	
Cyanide (total)	651.300	269.500	
Ammonia (as N)	299,400.000	131,600.000	
Fluoride	78,610.000	131,600.000	
Total suspended solids	92,090.000	43,800.000	
pН	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times.

Table 15-2 Primary Beryllium Solvent Extraction Raffinate from Beryl Ore

BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
		er million pounds)	
Pollutant or pollutant		rbonate produced	
property	from beryl ore as beryllium		
Beryllium	270.6	121.0	
Chromium (total)	96.8	39.0	
Copper	418.0	220.0	
Cyanide (total)	63.0	26.4	
Ammonia (as N)	29,330.0	12,890.0	
Fluoride	7,700.0	4,378.0	
Total suspended solids	9,020.0	4,290.0	
pН	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times.

Table 15-3
Primary Beryllium
Beryllium Carbonate Filtrate

RPT Effluent Limitations

BP1 Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
	mg/kg (pounds p	er million pounds)	
Pollutant or pollutant	of beryllium carb	onate produced as	
property	beryllium		
Beryllium	263.800	118.000	
Chromium (total)	94.380	38.610	
Copper	407.600	214.500	
Cyanide (total)	62.210	25.740	
Ammonia (as N)	28,590.000	12,570.000	
Fluoride	7,508.000	4,269.000	
Total suspended solids	8,795.000	4,183.000	
pН	(1)	(1)	

Within the range of 7.5 to 10.0 at all times.

Table 15-4 Primary Beryllium Beryllium Hydroxide Filtrate

Derymum Hydroxide Finrate			
BPT Effluent Limitations			
Maximum for Maximum for			
	any 1 day	monthly average	
mg/kg (pounds per million pounds)			
Pollutant or pollutant	of beryllium hyd	lroxide produced as	
property	beryllium		
Beryllium	167.280	78.800	
Chromium (total)	59.840	24.480	
Copper	258.400	136.000	
Cyanide (total)	39.440	16.320	
Ammonia (as N)	18,128.800	7,969.600	
Fluoride	4,760.000	2,706.400	
Total suspended solids	5,576.000	2,652.000	
nH	(1)	(1)	

pH
(1) Within the range of 7.5 to 10.0 at all times.

Table 15-5
Primary Beryllium
Beryllium Oxide Calcining Furnace
Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of beryllium ox	ide produced	
Beryllium	324.000	126.000	
Chromium (total)	116.000	47.470	
Copper	501.000	263.000	
Cyanide (total)	76.470	31.640	
Ammonia (as N)	35,150.000	15,450.000	
Fluoride	9,230.000	5,248.000	
Total suspended solids	10,810.000	5,142.000	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-6 Primary Beryllium Beryllium Hydroxide Supernatant

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant		droxide produced
property	from scrap and re	sidues as beryllium
Beryllium	282.9	126.5
Chromium (total)	101.2	41.4
Copper	437.0	230.0
Cyanide (total)	66.7	27.6
Ammonia (as N)	30,660.0	13,480.0
Fluoride	160,308.0	71,201.0
Total suspended solids	9,430.0	4,485.0
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-7 Primary Beryllium Process Water

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryllium pebbles produced	
Beryllium	215.00	96.14
Chromium (total)	76.91	31.46
Copper	332.10	174.80
Cyanide (total)	50.69	20.98
Ammonia (as N)	23,300.00	10,240.00
Fluoride	6,118.00	3,479.00
Total suspended solids	7,167.00	3,409.00
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-8 Primary Beryllium Fluoride Furnace Scrubber

Fluoride Furnace Scrubber		
BPT Effluent Limitations		
Maximum for Maximum for		Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryllium pebbles produced	
Beryllium	0.000	0.000
Chromium (total)	0.000	0.000
Copper	0.000	0.000
Cyanide (total)	0.000	0.000
Ammonia (as N)	0.000	0.000
Fluoride	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 15-9 Primary Beryllium Chip Treatment Wastewater

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryllium scrap chips treated	
Beryllium	9.533	4.263
Chromium (total)	3.410	1.395
Copper	14.730	7.750
Cyanide (total)	2.248	0.930
Ammonia (as N)	1,033.000	454.200
Fluoride	271.300	154.200
Total suspended solids	317.800	151.100
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-10 Primary Beryllium Beryllium Pebble Plant Area Vent Wet Air Pollution Control

Weet In Tollation Control		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryllium pebbles produced	
Beryllium	0.000	0.000
Chromium (total)	0.000	0.000
Copper	0.000	0.000
Cyanide (total)	0.000	0.000
Ammonia (as N)	0.000	0.000
Fluoride	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-11
Primary Beryllium
Beryllium Ore Gangue Dewatering

Berymum ofe dangue bewatering		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryl ore processed	
Beryllium	1.283	0.574
Chromium (total)	0.459	0.188
Copper	1.982	1.043
Cyanide (total)	0.302	0.125
Ammonia (as N)	139.032	61.120
Fluoride	36.505	20.756
Total suspended solids	42.763	20.339
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-12 Primary Beryllium Beryllium Ore Gangue Dewatering

BPT Effluent Limitations		
Maximum for	Maximum for	
any 1 day	monthly average	
mg/kg (pounds p	er million pounds)	
of beryl or	re processed	
3.279	1.466	
1.173	0.480	
5.064	2.665	
0.773	0.320	
355.245	156.169	
93.275	53.034	
109.265	51.968	
(1)	(1)	
	Maximum for any 1 day mg/kg (pounds p of beryl or 3.279 1.173 5.064 0.773 355.245 93.275 109.265	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-13 Primary Beryllium Beryl Ore Processing

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryl ore processed	
Beryllium	8.983	4.017
Chromium (total)	3.213	1.315
Copper	13.876	7.303
Cyanide (total)	2.118	0.876
Ammonia (as N)	973.490	427.956
Fluoride	255.605	145.330
Total suspended solids	299.423	142.409
pН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 15-14 Primary Beryllium Aluminum Iron Sludge Area Wastewater

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
	mg/kg (pounds p	er million pounds)	
Pollutant or pollutant	of total beryllium	carbonate produced	
property	as ber	as beryllium	
Beryllium	575.640	257.400	
Chromium (total)	205.920	84.240	
Copper	889.200	468.000	
Cyanide (total)	135.720	56.160	
Ammonia (as N)	62,384.400	27,424.800	
Fluoride	16,380.000	9,313.200	
Total suspended solids	19,188.000	9,126.000	
pH	(1)	(1)	

Within the range of 7.5 to 10.0 at all times.

Table 15-15 Primary Beryllium Bertrandite Ore Leaching Scrubber

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of bertrandite ore processed	
Beryllium	1.859	0.831
Chromium (total)	0.665	0.272
Copper	2.871	1.511
Cyanide (total)	0.438	0.181
Ammonia (as N)	201.416	88.545
Fluoride	52.885	30.069
Total suspended solids	61.951	29.465
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-16
Primary Beryllium
Bertrandite Ore Countercurrent and
Decantation Scrubber

Decumation Serubber		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of bertrandite ore processed	
Beryllium	0.124	0.056
Chromium (total)	0.044	0.018
Copper	0.192	0.101
Cyanide (total)	0.029	0.012
Ammonia (as N)	13.463	5.919
Fluoride	3.535	2.010
Total suspended solids	4.141	1.970
pН	(1)	(1)

 $[\]overline{}^{(1)}$ Within the range of 7.5 to 10.0 at all times.

NR 274.153 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 15-17
Primary Beryllium
Solvent Extraction Raffinate from Bertrandite Ore

Solvent Extraction Railmate from Bertrandite Ofe		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
mg/kg (pounds per million pounds) of		
Pollutant or pollu-	beryllium carbonate produced from	
tant property	bertrandite ore as beryllium	
Beryllium	1,842.000	831.000
Chromium (total)	831.000	336.900
Copper	2,875.000	1,370.000
Cyanide (total)	449.200	179.700
Ammonia (as N)	299,400.000	131,600.000
Fluoride	78,610.000	44,700.000

Table 15-18
Primary Beryllium
Solvent Extraction Raffinate from Beryl Ore

Solvent Extraction Running from Beryr Ore		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per million pounds) of	
Pollutant or pollu-	beryllium carbonate produced from beryl	
tant property	ore as beryllium	
Beryllium	180.4	81.4
Chromium (total)	81.4	33.0
Copper	281.6	134.2
Cyanide (total)	44.8	17.6
Ammonia (as N)	29,330.0	12,890.0
Fluoride	7,700.0	4,378.0

Table 15-19 Primary Beryllium Beryllium Carbonate Filtrate

BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
	mg/kg (pounds per	million pounds) of	
Pollutant or pollu-	beryllium carbo	beryllium carbonate produced as	
tant property	beryllium		
Beryllium	175.900	79.370	
Chromium (total)	79.370	32.180	
Copper	274.600	130.800	
Cyanide (total)	42.900	17.160	
Ammonia (as N)	28,590.000	12,570.000	
Fluoride	7,508.000	4,269.000	

Table 15-20 Primary Beryllium Beryllium Hydroxide Filtrate

BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
	mg/kg (pounds per	million pounds) of	
Pollutant or pollu-	beryllium hydrox	beryllium hydroxide produced as	
tant property	beryllium		
Beryllium	111.520	50.320	
Chromium (total)	50.320	20.400	
Copper	174.080	82.960	
Cyanide (total)	27.200	10.880	
Ammonia (as N)	18,128.800	7,969.600	
Fluoride	4,760.000	2,706.400	

Table 15-21 Primary Beryllium Beryllium Oxide Calcining Furnace Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	beryllium oxide produced	
Beryllium	216.20	97.57
Chromium (total)	97.57	39.56
Copper	337.50	160.90
Cyanide (total)	52.74	21.10
Ammonia (as N)	35,150.00	15,450.00
Fluoride	9,230.00	5,248.00

Table 15-22 Primary Beryllium Beryllium Hydroxide Supernatant

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per	million pounds) of
Pollutant or pollu-	beryllium hydroxide produced from scrap	
tant property	and residues as beryllium	
Beryllium	188.6	85.1
Chromium (total)	85.1	34.5
Copper	294.4	140.3
Cyanide (total)	46.0	18.4
Ammonia (as N)	30,660.0	13,480.0
Fluoride	160,308.0	71,201.0

DEPARTMENT OF NATURAL RESOURCES

Table 15-23 Primary Beryllium Process Water

Flocess water			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
day	monthly average		
mg/kg (pounds per	million pounds) of		
beryllium pebbles produced			
143.30	64.68		
64.68	26.22		
223.70	106.60		
34.96	13.98		
23,300.00	10,240.00		
6,118.00	3,479.00		
	AT Effluent Limitation Maximum for any 1 day mg/kg (pounds per beryllium pebl 143.30 64.68 223.70 34.96 23,300.00		

Table 15-24 Primary Beryllium Fluoride Furnace Scrubber

BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	beryllium pebl	beryllium pebbles produced	
Beryllium	0.000	0.000	
Chromium (total)	0.000	0.000	
Copper	0.000	0.000	
Cyanide (total)	0.000	0.000	
Ammonia (as N)	0.000	0.000	
Fluoride	0.000	0.000	

Table 15-25 Primary Beryllium Chip Treatment Wastewater

- r			
BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	beryllium scrap	beryllium scrap chips treated	
Beryllium	6.355	2.868	
Chromium (total)	2.868	1.163	
Copper	9.920	4.728	
Cyanide (total)	1.550	0.620	
Ammonia (as N)	1,033.000	454.200	
Fluoride	271.300	154.200	

Table 15-26
Primary Beryllium
Beryllium Pebble Plant Area Vent
Wet Air Pollution Control

BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	beryllium pebl	beryllium pebbles produced	
Beryllium	0.000	0.000	
Chromium (total)	0.000	0.000	
Copper	0.000	0.000	
Cyanide (total)	0.000	0.000	
Ammonia (as N)	0.000	0.000	
Fluoride	0.000	0.)00	

Table 15-27
Primary Beryllium
Beryllium Ore Gangue Dewatering

BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	beryl ore p	beryl ore processed	
Beryllium	0.855	0.386	
Chromium (total)	0.386	0.156	
Copper	1.335	0.636	
Cyanide (total)	0.209	0.083	
Ammonia (as N)	139.032	61.120	
Fluoride	36.505	20.756	

Table 15-28
Primary Beryllium
Bertrandite Ore Gangue Dewatering

BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	beryl ore p	beryl ore processed	
Beryllium	2.185	0.986	
Chromium (total)	0.986	0.400	
Copper	3.411	1.626	
Cyanide (total)	0.533	0.213	
Ammonia (as N)	355.245	156.169	
Fluoride	93.275	53.034	

Table 15-29 Primary Beryllium Beryl Ore Processing

Maximum for any 1 Maximum for			
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	beryl ore p	beryl ore processed	
Beryllium	5.988	2.702	
Chromium (total)	2.702	1.095	
Copper	9.348	4.455	
Cyanide (total)	1.461	0.584	
Ammonia (as N)	973.490	427.956	
Fluoride	255.605	145.330	

Table 15-30 Primary Beryllium Aluminum Iron Sludge Area Wastewater

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per m	illion pounds) of to-
Pollutant or pollu-	tal beryllium carbo	onate produced as
tant property	beryllium	
Beryllium	383.760	173.160
Chromium (total)	173.160	70.200
Copper	599.040	285.480
Cyanide (total)	93.600	37.440
Ammonia (as N)	62,384.400	27,424.800
Fluoride	16,380.000	9,313.200

Table 15-31
Primary Beryllium
Bertrandite Ore Leaching Scrubber

Del trandite Ofe Leaching Serubber			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	bertrandite or	bertrandite ore processed	
Beryllium	1.239	0.559	
Chromium (total)	0.599	0.227	
Copper	1.934	0.922	
Cyanide (total)	0.302	0.121	
Ammonia (as N)	201.416	88.545	
Fluoride	52.885	30.069	

Table 15-32
Primary Beryllium
Bertrandite Ore Countercurrent and
Decantation Scrubber

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	bertrandite of	re processed
Beryllium	0.083	0.037
Chromium (total)	0.037	0.015
Copper	0.129	0.062
Cyanide (total)	0.020	0.008
Ammonia (as N)	13.463	5.919
Fluoride	3.535	2.010

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.154 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 15-33 Primary Beryllium Solvent Extraction Raffinate from Bertrandite Ore

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant		rbonate produced
property	from bertrandite	ore as beryllium
Beryllium	1,842.000	831.000
Chromium (total)	831.000	336.900
Copper	2,875.000	1,370.000
Cyanide (total)	449.200	179.700
Ammonia (as N)	299,400.000	131,600.000
Fluoride	78,610.000	44,700.00
Total suspended solids	33,690.000	26,950.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-34 Primary Beryllium Solvent Extraction Raffinate from Beryl Ore

	NSPS	•
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant		rbonate produced
property	from beryl ore as beryllium	
Beryllium	180.4	81.4
Chromium (total)	81.4	33.0
Copper	281.6	134.2
Cyanide (total)	44.8	17.6
Ammonia (as N)	29,330.0	12,890.0
Fluoride	7,700.0	4,378.0
Total suspended solids	3,300.0	2,640.0
pH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 15-35 Primary Beryllium Beryllium Carbonate Filtrate

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
		er million pounds)
Pollutant or pollutant	of beryllium carl	onate produced as
property	beryllium	
Beryllium	175.900	79.370
Chromium (total)	79.370	32.180
Copper	274.600	130.800
Cyanide (total)	42.900	17.160
Ammonia (as N)	28,590.000	12,579.000
Fluoride	7,508.000	4,269.000
Total suspended solids	3,218.000	2,574.000
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 15-36 Primary Beryllium Anode Bake Plant Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
		er million pounds)
Pollutant or pollutant	of beryllium hydi	roxide produced as
property	bery	llium
Beryllium	111.520	50.320
Chromium (total)	50.320	20.320
Copper	174.080	82.960
Cyanide (total)	27.200	10.880
Ammonia (as N)	18,128.800	7,969.600
Fluoride	4,760.000	2,706.400
Total suspended solids	2,040.000	1,632.000
pH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 15-37 Primary Beryllium Beryllium Oxide Calcining Furnace Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryllium oxide produced	
Beryllium	216.20	97.57
Chromium (total)	97.57	39.56
Copper	337.50	160.90
Cyanide (total)	52.74	21.10
Ammonia (as N)	35,150.00	15,450.00
Fluoride	9,230.00	5,248.00
Total suspended solids	3,956.00	3,164.00
nH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-38
Primary Beryllium
Beryllium Hydroxide Supernatant

berymum Trydroxide Supernatant		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of beryllium hy	droxide produced
property	from scrap and re	sidues as beryllium
Beryllium	188.6	85.1
Chromium (total)	85.1	34.5
Copper	294.4	140.3
Cyanide (total)	46.0	18.4
Ammonia (as N)	30,660.0	13,480.0
Fluoride	160,308.0	71,201.0
Total suspended solids	3,450.0	2,760.0
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-39 Primary Beryllium Process Water

	1100000 114001	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryllium p	ebbles produced
Beryllium	143.30	64.68
Chromium (total)	64.68	26.22
Copper	223.70	106.60
Cyanide (total)	34.96	13.98
Ammonia (as N)	23,300.00	10,240.00
Fluoride	61,180.00	3,479.00
Total suspended solids	2,622.00	2,098.00
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-40
Primary Beryllium
Fluoride Furnace Scrubber

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryllium pebbles produced	
Beryllium	0.000	0.000
Chromium (total)	0.000	0.000
Copper	0.000	0.000
Cyanide (total)	0.000	0.000
Ammonia (as N)	0.000	0.000
Fluoride	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

 $[\]overline{}^{(1)}$ Within the range of 7.5 to 10.0 at all times.

Table 15-41 Primary Beryllium Chip Treatment Wastewater

		-
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryllium sc	rap chips treated
Beryllium	6.355	2.868
Chromium (total)	2.868	1.163
Copper	9.920	4.728
Cyanide (total)	1.550	0.620
Ammonia (as N)	1,033.000	454.200
Fluoride	271.300	154.200
Total suspended solids	116.300	93.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-42 Primary Beryllium Beryllium Pebble Plant Area Vent Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryllium p	ebbles produced
Beryllium	0.000	0.000
Chromium (total)	0.000	0.000
Copper	0.000	0.000
Cyanide (total)	0.000	0.000
Ammonia (as N)	0.000	0.000
Fluoride	0.000	0.000
Total suspended solids	0.000	0.000
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-43 Primary Beryllium Beryllium Ore Gangue Dewatering

	NSPS	<u>8</u>
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryl or	re processed
Beryllium	0.855	0.386
Chromium (total)	0.386	0.156
Copper	1.335	0.636
Cyanide (total)	0.209	0.083
Ammonia (as N)	139.032	61.120
Fluoride	36.505	20.756
Total suspended solids	15.645	12.516
pН	(1)	(1)

 $^{^{\}left(1\right)}$ Within the range of 7.5 to 10.0 at all times.

Table 15-44 Primary Beryllium Bertrandite Ore Gangue Dewatering

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryl or	e processed
Beryllium	2.185	0.986
Chromium (total)	0.986	0.400
Copper	3.411	1.626
Cyanide (total)	0.533	0.213
Ammonia (as N)	355.245	156.169
Fluoride	93.275	53.034
Total suspended solids	39.975	31.980
рН	(1)	(1)

 $^{^{\}left(1\right)}$ Within the range of 7.5 to 10.0 at all times.

Table 15-45 Primary Beryllium Beryl Ore Processing

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of beryl or	e processed
Beryllium	5.988	2.702
Chromium (total)	2.702	1.095
Copper	9.348	4.455
Cyanide (total)	1.461	0.584
Ammonia (as N)	973.490	427.956
Fluoride	255.605	145.330
Total suspended solids	109.545	87.636
pН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 15-46 Primary Beryllium Aluminum Iron Sludge Area Wastewater

	NSPS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per r	nillion pounds) of
tant property	beryllium carbona	ate produced as
	beryll	ium
Beryllium	383.760	173.160
Chromium (total)	173.160	70.200
Copper	599.040	285.480
Cyanide (total)	93.600	37.440
Ammonia (as N)	62,384.400	27,424.800
Fluoride	16,380.000	9,313.000
Total suspended	7,020.000	5,616.000
solids	•	•
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-47 Primary Beryllium Bertrandite Ore Leaching Scrubber

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of bertrandite	ore processed
Beryllium	1.239	0.559
Chromium (total)	0.559	0.227
Copper	1.934	0.922
Cyanide (total)	0.302	0.121
Ammonia (as N)	201.416	88.545
Fluoride	52.885	30.069
Total suspended solids	22.665	18.132
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 15-48 Primary Beryllium Bertrandite Ore Countercurrent and **Decantation Scrubber**

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of bertrandite	ore processed
Beryllium	0.083	0.037
Chromium (total)	0.037	0.015
Copper	0.129	0.062
Cyanide (total)	0.020	0.008
Ammonia (as N)	13.463	5.919
Fluoride	3.535	2.010
Total suspended solids	1.515	1.212
pН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.156 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.153.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XVIII — Primary and Secondary Germanium and Gallium

NR 274.18 Applicability; description of the primary and secondary germanium and gallium subcategory.

This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of germanium or gallium by primary or secondary germanium or gallium facilities.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.182 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 18-1
Primary and Secondary Germanium and Gallium
Still Liquor

Sun Liquor			
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of germanium chlorinated		
Arsenic	131.700	58.590	
Lead	26.460	12.600	
Zinc	91.980	38.430	
Fluoride	2,205.000	1,254.000	
Total suspended solids	2,583.000	1,229.000	
nH	(1)	(1)	

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 18-2 Primary and Secondary Germanium and Gallium Chlorinator Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of germaniu	m chlorinated
Arsenic	27.530	12.250
Lead	5.531	2.634
Zinc	19.230	8.034
Fluoride	461.000	262.100
Total suspended solids	540.000	256.800
рН	(1)	(1)

 $^{^{\}scriptscriptstyle{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 18-3 Primary and Secondary Germanium and Gallium Germanium Hydrolysis Filtrate

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of germanium hydrolyzed	
Arsenic	39.440	17.550
Lead	7.925	3.774
Zinc	27.550	11.510
Fluoride	660.500	375.500
Total suspended solids	773.700	368.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 18-4 Primary and Secondary Germanium and Gallium Acid Wash and Rinse Water

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of german	ium washed
Arsenic	325.500	144.800
Lead	65.400	31.140
Zinc	227.400	94.990
Fluoride	5,450.000	3,099.000
Total suspended solids	6,385.000	3,037.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 18-5 Primary and Secondary Germanium and Gallium Gallium Hydrolysis Filtrate

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of gallium hydrolyzed		
Arsenic	70.450	31.350	
Lead	14.160	6.742	
Zinc	49.220	20.560	
Fluoride	1,180.000	670.800	
Total suspended solids	1,382.000	657.300	
pН	(1)	(1)	
(1) Within the range of 7.5 to 10.0 at all times.			

Table 18-6 Primary and Secondary Germanium and Gallium Solvent Extraction Raffinate

Solvent Extraction Raininate			
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
		er million pounds)	
Pollutant or pollutant	of gallium prod	duced by solvent	
property	extraction		
Arsenic	39.330	17.500	
Lead	7.904	3.764	
Zinc	27.480	11.480	
Fluoride	658.700	374.500	
Total suspended solids	771.600	367.000	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.183 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 18-7
Primary and Secondary Germanium and Gallium
Still Liquor

Still Elquoi			
BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per		
tant property	germanium chlorinated		
Arsenic	131.700	58.590	
Lead	26.460	12.600	
Zinc	91.980	38.430	
Fluoride	2,205.000	1,254.000	

Table 18-8 Primary and Secondary Germanium and Gallium Chlorinator Wet Air Pollution Control

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	germanium chlorinated	
Arsenic	27.530	12.250
Lead	5.531	2.634
Zinc	19.230	8.034
Fluoride	461.000	262.100

Table 18-9
Primary and Secondary Germanium and Gallium
Germanium Hydrolysis Filtrate

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	
tant property	germanium hydrolyzed	
Arsenic	39.440	17.550
Lead	7.925	3.774
Zinc	27.550	11.510
Fluoride	660.500	375.500

Table 18-10 Primary and Secondary Germanium and Gallium Acid Wash and Rinse Water

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	germanium washed	
Arsenic	325.500	144.800
Lead	65.400	31.140
Zinc	227.400	94.990
Fluoride	5,450.000	3,099.000

Table 18-11 Primary and Secondary Germanium and Gallium Gallium Hydrolysis Filtrate

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	gallium hydrolyzed	
Arsenic	70.450	31.350
Lead	14.160	6.742
Zinc	49.220	20.560
Fluoride	1,180.000	670.800

Table 18-12 Primary and Secondary Germanium and Gallium Solvent Extraction Raffinate

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	gallium produced by solvent extraction	
Arsenic	39.330	17.500
Lead	7.904	3.764
Zinc	27.480	11.480
Fluoride	658.700	374.500

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.184 New source performance standards.

Any new source subject to this subchapter shall achieve the limitations set forth in s. NR 274.182.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.185 Pretreatment standards for existing sources. Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.183.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.186 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the standards set forth in s. NR 274.183.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XIX — Secondary Indium

NR 274.19 Applicability; description of the secondary indium subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal raw materials.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.194 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 19-1 Secondary Indium Displacement Supernatant

P		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of indium m	etal produced
Cadmium	2.105	0.929
Lead	2.600	1.238
Zinc	9.037	3.776
Indium	2.724	1.114
Total suspended solids	253.800	120.700
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 19-2 Secondary Indium Spent Electrolyte

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of cathode in	dium produced
Cadmium	12.170	5.370
Lead	15.040	7.160
Zinc	52.270	21.840
Indium	15.750	6.444
Total suspended solids	1,468.000	698.100
pН	(1)	(1)

Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.195 Pretreatment standards for existing sources. Except as provided in ss. NR 211.13 and 211.14, any new [existing] source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the following PSES:

Table 19-3
Secondary Indium
Displacement Supernatant

Displacement Supernatant			
	PSES		
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per m	illion pounds) of in-	
tant property	dium metal produced		
Cadmium	2.105	0.929	
Lead	2.600	1.238	
Zinc	9.037	3.776	
Indium	2.724	1.114	

Table 19-4 Secondary Indium

Spelit Electrolyte		
PSES		
Maximum for any 1	Maximum for	
day	monthly average	
mg/kg (pounds per	million pounds) of	
cathode indium produced		
12.170	5.370	
15.040	7.160	
52.270	21.840	
15.750	6.444	
	PSES Maximum for any 1 day mg/kg (pounds per cathode indiu 12.170 15.040 52.270	

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.196 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the standards set forth in s. NR 274.195.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XX — Secondary Mercury

NR 274.20 Applicability; description of the secondary mercury subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of mercury at secondary mercury facilities processing recycled mercuric oxide batteries and other scrap raw materials containing mercury.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.204 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 20-1 Secondary Mercury Spent Battery Electrolyte

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of mercury produ	iced from batteries
Lead	0.030	0.014
Mercury	0.016	0.006
Total suspended solids	1.590	1.272
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 20-2 Secondary Mercury Acid Wash and Rinse Water

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of mercury washed and rinsed	
Lead	0.00056	0.00026
Mercury	0.00030	0.00012
Total suspended solids	0.03000	0.02400
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 20-3 Secondary Mercury Furnace Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of mercury processed through	
	furnace	
Lead	0.000	0.000
Mercury	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.206 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the following standards:

Table 20-4 Secondary Mercury Spent Battery Electrolyte

Spelit Battery Electrolyte		
PSNS		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	mercury produced from batteries	
Lead	0.030	0.014
Mercury	0.016	0.006
Table 20-5		
Secondary Mercury		
Acid Wash and Rinse Water		
PSNS		

Pollutant or pollutant property mg/kg (pounds per million pounds) of mercury washed and rinsed

Lead 0.00056 0.00026

Mercury 0.00030 0.00012

Maximum for any 1

Maximum for

Table 20-6 Secondary Mercury Furnace Wet Air Pollution Control

	PSNS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	mercury processed through furnace	
Lead	0.000	0.000
Mercury	0.000	0.000

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XXI — Primary Molybdenum and Rhenium

NR 274.21 Applicability; description of the primary molybdenum and rhenium subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of molybdenum and rhenium at primary molybdenum and rhenium facilities.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.212 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 21-1
Primary Molybdenum and Rhenium
Molybdenum Sulfide Leachate

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of molybdenun	n sulfide leached
Arsenic	0.968	0.431
Lead	0.195	0.093
Nickel	0.889	0.588
Selenium	0.570	0.255
Ammonia (as N)	61.720	27.130
Fluoride	16.210	9.214
Total suspended solids	18.980	9.029
pН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 21-2 Primary Molybdenum and Rhenium Roaster Sulfur Dioxide Scrubber

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of molybdenun	n sulfide roasted
Arsenic	3.509	1.561
Lead	0.705	0.336
Nickel	3.224	2.133
Selenium	2.065	0.924
Ammonia (as N)	223.800	98.390
Fluoride	58.770	33.410
Total suspended solids	68.840	32.740
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 21-3 Primary Molybdenum and Rhenium Molybdic Oxide Leachate

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	per million pounds)
Pollutant or pollutant	of molybdenum of	contained in molyb-
property	dic oxid	le leachate
Arsenic	24.210	10.770
Lead	4.865	2.317
Nickel	22.240	14.710
Selenium	14.250	6.371
Ammonia (as N)	1,544.000	678.800
Fluoride	405.400	230.500
Total suspended solids	474.900	225.900
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 21-4
Primary Molybdenum and Rhenium
Hydrogen Reduction Furnace Scrubber

Try drogen reduction I dridee Serdoser		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of molybdenu	m metal powder
property	produced	
Arsenic	47.860	21.300
Lead	9.617	4.580
Nickel	43.970	29.080
Selenium	28.170	12.600
Ammonia (as N)	3,052.000	1,342.000
Fluoride	801.400	455.700
Total suspended solids	938.800	446.500
nН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 21-5
Primary Molybdenum and Rhenium
Depleted Rhenium Scrubbing Solution

Bepieted Ithemani Serussing Solution		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of molybdenur	n sulfide roasted
Arsenic	1.497	0.666
Lead	0.301	0.143
Nickel	1.375	0.909
Selenium	0.881	0.394
Ammonia (as N)	95.440	41.960
Fluoride	25.060	14.250
Total suspended solids	29.360	13.960
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.213 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 21-6
Primary Molybdenum and Rhenium
Molybdenum Sulfide Leachate

Worybuenum Surfice Leachate		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	molybdenum sulfide leachate	
Arsenic	0.644	0.287
Lead	0.130	0.060
Nickel	0.255	0.171
Selenium	0.380	0.171
Ammonia (as N)	61.720	27.130
Fluoride	16.210	9.214

Table 21-7
Primary Molybdenum and Rhenium
Roaster Sulfur Dioxide Scrubber

BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	million pounds) of	
tant property	molybdenum s	molybdenum sulfide roasted	
Arsenic	2.334	1.041	
Lead	0.470	0.218	
Nickel	0.924	0.621	
Selenium	1.377	0.621	
Ammonia (as N)	223.800	98.390	
Fluoride	58.770	33.410	

Table 21-8
Primary Molybdenum and Rhenium
Molybdic Oxide Leachate

Molybuic Oxide Leachate		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per	million pounds) of
Pollutant or pollu-	molybdenum contair	ned in molybdic ox-
tant property	ide leachate	
Arsenic	16.100	7.182
Lead	3.244	1.506
Nickel	6.371	4.286
Selenium	9.499	4.286
Ammonia (as N)	1,544.000	678.800
Fluoride	405.400	230.500

Table 21-9 Primary Molybdenum and Rhenium Hydrogen Reduction Furnace Scrubber

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	molybdenum metal	powder produced
Arsenic	3.183	1.420
Lead	0.641	0.298
Nickel	1.260	0.847
Selenium	1.878	0.847
Ammonia (as N)	305.300	134.200
Fluoride	80.150	45.570

Table 21-10
Primary Molybdenum and Rhenium
Depleted Rhenium Scrubbing Solution

Depicted Internation Serasoning Solution		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	molybdenum sulfide roasted	
Arsenic	0.995	0.444
Lead	0.201	0.093
Nickel	0.394	0.265
Selenium	0.587	0.265
Ammonia (as N)	95.440	41.960
Fluoride	25.060	14.250

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.214 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 21-11
Primary Molybdenum and Rhenium
Molybdenum Sulfide Leachate

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds pe	r million pounds)
property	of molybdenum si	ulfide leachate
Arsenic	0.644	0.287
Lead	0.130	0.060
Nickel	0.255	0.171
Selenium	0.380	0.171
Ammonia (as N)	61.720	27.130
Fluoride	16.210	9.214
Total suspended solids	6.945	5.556
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 21-12
Primary Molybdenum and Rhenium
Roaster Sulfur Dioxide Scrubber

Rouster Surfur Dioxide Serusser		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of molybdenur	n sulfide roasted
Arsenic	2.334	1.041
Lead	0.470	0.218
Nickel	0.924	0.621
Selenium	1.377	0.621
Ammonia (as N)	223.800	98.390
Fluoride	58.770	33.410
Total suspended solids	25.190	20.150
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 21-13
Primary Molybdenum and Rhenium
Molybdic Oxide Leachate

Wolybale Oxide Ecachate		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	per million pounds)
Pollutant or pollutant	of molybdenum of	contained in molyb-
property	dic oxide leachate	
Arsenic	16.100	7.182
Lead	3.244	1.506
Nickel	6.371	4.286
Selenium	9.499	4.286
Ammonia (as N)	1,544.000	678.800
Fluoride	405.400	230.500
Total suspended solids	173.800	139.000
pH	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 21-14
Primary Molybdenum and Rhenium
Hydrogen Reduction Furnace Scrubber

	NSPS	·
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pour	nds per million
Pollutant or pollutant	pounds) of mo	olybdenum metal
property	powder produced	
Arsenic	3.183	1.420
Lead	0.641	0.298
Nickel	1.260	0.847
Selenium	1.878	0.847
Ammonia (as N)	305.300	134.200
Fluoride	80.150	45.570
Total suspended solids	34.350	27.480
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 21-15
Primary Molybdenum and Rhenium
Depleted Rhenium Scrubbing Solution

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of molybdenur	n sulfide roasted
Arsenic	0.995	0.444
Lead	0.201	0.093
Nickel	0.394	0.265
Selenium	0.587	0.265
Ammonia (as N)	95.440	41.960
Fluoride	25.060	14.250
Total suspended solids	10.740	8.592
pH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.216 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.213.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XXIII — Primary Nickel and Cobalt

NR 274.23 Applicability; description of the primary nickel and cobalt subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of nickel and cobalt by primary nickel and cobalt facilities processing ore concentrate raw materials.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.232 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 23-1 Primary Nickel and Cobalt Raw Material Dust Control

Raw Material Bust Collifor			
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
	mg/kg (pounds p	er million pounds)	
Pollutant or pollutant		kel, and cobalt in	
property	crushed raw material		
Copper	0.146	0.077	
Nickel	0.148	0.098	
Ammonia (as N)	10.260	4.512	
Cobalt	0.016	0.007	
Total suspended solids	3.157	1.502	
nH	(1)	(1)	

pH
(1) Within the range of 7.5 to 10.0 at all times.

Table 23-2
Primary Nickel and Cobalt
Nickel Wash Water

Nickel Wash Water			
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds pe	r million pounds)	
property	of nickel powder v	washed	
Copper	0.064	0.034	
Nickel	0.065	0.043	
Ammonia (as N)	4.515	1.985	
Cobalt	0.007	0.003	
Total suspended solids	1.389	0.660	
рH	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 23-3 Primary Nickel and Cobalt Nickel Reduction Decant

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of nicke	l produced
Copper	24.120	12.700
Nickel	24.370	16.120
Ammonia (as N)	1,692.000	743.900
Cobalt	2.666	1.143
Total suspended solids	520.500	247.600
pН	(1)	(1)

Within the range of 7.5 to 10.0 at all times.

Table 23-4 Primary Nickel and Cobalt Cobalt Reduction Decant

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of cobalt	t produced
Copper	40.660	21.400
Nickel	41.080	27.180
Ammonia (as N)	2,852.000	1,254.000
Cobalt	4.494	1.926
Total suspended solids	877.300	417.300
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

NR 274.233 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 23-5 Primary Nickel and Cobalt Raw Material Dust Control

Raw Material Bust Control			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
mg/kg (pounds per million pounds) of			
Pollutant or pollu-	copper, nickel, and co	balt in crushed raw	
tant property	material		
Copper	0.099	0.047	
Nickel	0.042	0.028	
Ammonia (as N)	10.260	4.512	
Cobalt	0.011	0.005	

Table 23-6
Primary Nickel and Cobalt
Nickel Wash Water

TVICKET VVdSIT VVdter		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	nickel powder washed	
Copper	0.043	0.021
Nickel	0.019	0.013
Ammonia (as N)	4.515	1.985
Cobalt	0.005	0.002

Table 23-7
Primary Nickel and Cobalt
Nickel Reduction Decant

BAT Effluent Limitations			
Maximum for any 1 M		Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per million pounds) of		
tant property	nickel produced		
Copper	16.250	7.744	
Nickel	6.982	4.697	
Ammonia (as N)	1,692.000	743.900	
Cobalt	1.777	0.889	

Table 23-8
Primary Nickel and Cobalt
Cobalt Reduction Decant

BAT Effluent Limitations		
Maximum for any 1 Maximu		Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	cobalt produced	
Copper	27.390	13.050
Nickel	11.770	7.917
Ammonia (as N)	2,852.000	1,254.000
Cobalt	2.996	1.498

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.234 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 23-9 Primary Nickel and Cobalt Raw Material Dust Control

Raw Material Bust Control		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of copper, nickel, and cobalt in	
property	crushed raw material	
Copper	0.099	0.047
Nickel	0.042	0.028
Ammonia (as N)	10.260	4.512
Cobalt	0.011	0.005
Total suspended solids	1.155	0.924
Нα	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 23-10 Primary Nickel and Cobalt Nickel Wash Water

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of nickel po	wder washed
Copper	0.043	0.021
Nickel	0.019	0.013
Ammonia (as N)	4.515	1.985
Cobalt	0.005	0.002
Total suspended solids	0.508	0.406
рН	(1)	(1)
(1) xx x x x x x x x x x x x x x x x x x		

(1) Within the range of 7.5 to 10.0 at all times.

Table 23-11 Primary Nickel and Cobalt Nickel Reduction Decant

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of nickel	produced
Copper	16.250	7.744
Nickel	6.982	4.697
Ammonia (as N)	1,692.000	743.900
Cobalt	1.777	0.889
Total suspended solids	190.400	152.300
pH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 23-12 Primary Nickel and Cobalt Cobalt Reduction Decant

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of cobal	t produced
Copper	27.390	13.050
Nickel	11.770	7.917
Ammonia (as N)	2,852.000	1,254.000
Cobalt	2.996	1.498
Total suspended solids	321.000	256.800
pH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.236 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.233.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XXIV — Secondary Nickel

NR 274.24 Applicability; description of the secondary nickel subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of nickel by secondary nickel facilities which process slag, spent acids, or scrap metals raw materials.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.244 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

> Table 24-1 Secondary Nickel Slag Reclaim Tailings

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
		er million pounds)
Pollutant or pollutant	of slag input i	nto the reclaim
property	process	
Chromium	5.653	2.313
Copper	24.410	12.850
Nickel	24.670	16.320
Total suspended solids	526.800	250.500
pH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 24-2 Secondary Nickel Acid Reclaim Leaching Filtrate

	NSPS	
	Maximum for any	Maximum for
	1 day	monthly average
Pollutant or pollutant	mg/kg (pounds per million pounds)	
property	of acid reclaim nickel produced	
Chromium	2.198	0.899
Copper	9.491	4.995
Nickel	9.590	6.344
Total suspended solids	204.800	97.400
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 24-3 Secondary Nickel Acid Reclaim Leaching Belt Filter Backwash

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of nickel produced	
Chromium	0.528	0.216
Copper	2.278	1.199
Nickel	2.302	1.523
Total suspended solids	49.160	23.380
На	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.245 Pretreatment standards for existing sources. Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the following PSES:

Table 24-4 Secondary Nickel Slag Reclaim Tailings

	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	slag input into the	reclaim process
Chromium	5.653	2.313
Copper	24.410	12.850
Nickel	24.670	16.320
Table 24-5		

Secondary Nickel
Acid Reclaim Leaching Filtrate

PSES	
Maximum for any 1	Maximum for
day	monthly average
mg/kg (pounds per million pounds) of	
acid reclaim nickel produced	
2.198	0.899
9.491	4.995
9.590	6.344
	Maximum for any 1 day mg/kg (pounds per acid reclaim ni 2.198 9.491

Table 24-6 Secondary Nickel Acid Reclaim Leaching Belt Filter Backwash

	PSES	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	nickel produced	
Chromium	0.528	0.216
Copper	2.278	1.199
Nickel	2.302	1.523

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.246 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the standards set forth in s. NR 274.245.

History: Cr. Register, January, 1990, No. 421, eff. 1-1-91.

Subchapter XXV — Primary Precious Metals and Mercury

NR 274.25 Applicability; description of the primary precious metals and mercury subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of gold, silver or mercury by primary precious metals and mercury facilities.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.252 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 25-1
Primary Precious Metals and Mercury
Smelter Wet Air Pollution Control

Silicited Wet 7th Tollution Control			
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/troy ounce of	gold and silver	
property	smelted		
Lead	0.546	0.260	
Mercury	0.325	0.130	
Silver	0.533	0.221	
Zinc	1.898	0.793	
Gold	0.130		
Oil and grease	26.000	15.600	
Total suspended solids	53.300	25.350	
pН	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times

Table 25-2 Primary Precious Metals and Mercury Silver Chloride Reduction Spent Solution

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce of	f silver reduced in
property	solution	
Lead	0.168	0.080
Mercury	0.100	0.040
Silver	0.164	0.068
Zinc	0.584	0.244
Gold	0.040	
Oil and grease	8.000	4.800
Total suspended solids	16.400	7.800
pН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times

Table 25-3 Primary Precious Metals and Mercury Electrolytic Cells Wet Air Pollution Control

BPT Effluent Limitations		
Maximum for Maximum for		
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce	of gold refined
property	electrolytically	
Lead	83.160	39.600
Mercury	49.500	19.800
Silver	81.180	33.660
Zinc	289.100	120.800
Gold	19.800	
Oil and grease	3,960.000	2,376.000
Total suspended solids	8,118.000	3,861.000
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times

Table 25-4 Primary Precious Metals and Mercury Electrolyte Preparation Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/troy ounce of	silver in the pro-	
property	duced e	lectrolyte	
Lead	0.021	0.010	
Mercury	0.013	0.005	
Silver	0.021	0.009	
Zinc	0.073	0.031	
Gold	0.005		
Oil and grease	1.000	0.600	
Total suspended solids	2.050	0.975	
pH	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 25-5 Primary Precious Metals and Mercury Calciner Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of mercur	y condensed	
Lead	78.200	37.240	
Mercury	46.550	18.620	
Silver	76.340	31.650	
Zinc	271.900	113.600	
Gold	18.600		
Oil and grease	3,724.000	2,234.000	
Total suspended solids	7,634.000	3,631.000	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 25-6 Primary Precious Metals and Mercury Calcine Quench Water

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of mercury condensed	
Lead	7.392	3.520
Mercury	4.400	1.760
Silver	7.216	2.992
Zinc	25.700	10.740
Gold	1.760	
Oil and grease	352.000	211.200
Total suspended solids	721.600	343.200
pН	(1)	(1)
44)		

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 25-7 Primary Precious Metals and Mercury Calciner Stack Gas Contact Cooling Water

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of mercury condensed	
Lead	1.743	0.830
Mercury	1.038	0.415
Silver	1.702	0.706
Zinc	6.059	2.532
Gold	0.415	
Oil and grease	83.000	49.800
Total suspended solids	170.200	80.930
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 25-8 Primary Precious Metals and Mercury Condenser Blowdown

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of mercury condensed	
Lead	5.796	2.760
Mercury	3.450	1.380
Silver	5.658	2.346
Zinc	20.150	8.418
Gold	1.380	
Oil and grease	276.000	165.600
Total suspended solids	565.800	269.100
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 25-9 Primary Precious Metals and Mercury Mercury Cleaning Bath Water

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of mercury condensed	
Lead	0.588	0.280
Mercury	0.350	0.140
Silver	0.574	0.238
Zinc	2.044	0.854
Gold	0.140	
Oil and grease	28.000	16.800
Total suspended solids	57.400	27.300
pH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times. **History:** Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.253 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of ef-

Table 25-10 Primary Precious Metals and Mercury Smelter Wet Air Pollution Control

fluent reduction attainable by application of BAT:

Smelter Wet Air Pollution Control				
В	BAT Effluent Limitations			
Maximum for any 1 Maximum for				
	day	monthly average		
Pollutant or pollu-	mg/troy ounce of gol	d and silver smelted		
tant property				
Lead	0.364	0.169		
Mercury	0.195	0.078		
Silver	0.377	0.156		
Zinc	1.326	0.546		
Gold	0.130			

Table 25-11 Primary Precious Metals and Mercury Silver Chloride Reduction Spent Solution

BAT Effluent Limitations			
Maximum for any 1 Maximum for			
		monthly average	
	day		
Pollutant or pollu-	mg/troy ounce of	mg/troy ounce of silver reduced in	
tant property	solution		
Lead	0.112	0.052	
Mercury	0.060	0.024	
Silver	0.116	0.048	
Zinc	0.408	0.168	
Gold	0.040		

Table 25-12 Primary Precious Metals and Mercury Electrolytic Cells Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1 Maximum for	
	day	monthly average
Pollutant or pollu-	mg/troy ounce	of gold refined
tant property	electrolytically	
Lead	5.544	2.574
Mercury	2.970	1.188
Silver	5.742	2.376
Zinc	20.200	8.316
Gold	1.980	

Table 25-13 Primary Precious Metals and Mercury Electrolyte Preparation Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1 Maximum for	
	day	monthly average
Pollutant or pollu-	mg/troy ounce of sil	ver in the produced
tant property	electrolyte	
Lead	0.014	0.007
Mercury	0.008	0.003
Silver	0.015	0.006
Zinc	0.051	0.021
Gold	0.005	

Table 25-14
Primary Precious Metals and Mercury
Calciner Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	mercury condensed	
Lead	6.160	2.860
Mercury	3.300	1.320
Silver	6.380	2.640
Zinc	22.440	9.240
Gold	2.200	

Table 25-15 Primary Precious Metals and Mercury Calcine Quench Water

Contract Contract Contract			
BAT Effluent Limitations			
Maximum for any 1 Maximum f		Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per	mg/kg (pounds per million pounds) of	
tant property	mercury condensed		
Lead	4.928	2.288	
Mercury	2.640	1.056	
Silver	5.104	2.112	
Zinc	17.950	7.392	
Gold	1.760		

Table 25-16 Primary Precious Metals and Mercury Calciner Stack Gas Contact Cooling Water

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	mercury condensed	
Lead	1.162	0.540
Mercury	0.623	0.249
Silver	1.204	0.498
Zinc	4.233	1.743
Gold	0.415	

Table 25-17 Primary Precious Metals and Mercury Condenser Blowdown

Condenser Blowdown		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu- mg/kg (pounds per million pounds) of		
tant property	mercury condensed	
Lead	3.864	1.794
Mercury	2.070	0.828
Silver	4.002	1.656
Zinc	14.080	5.796
Gold	1.380	

Table 25-18 Primary Precious Metals and Mercury Mercury Cleaning Bath Water

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	mercury condensed	
Lead	0.392	0.182
Mercury	0.210	0.084
Silver	0.406	0.168
Zinc	1.428	0.588
Gold	0.140	

NR 274.254 New source performance standards. Any new source subject to this subchapter shall achieve the following standards:

Table 25-19 Primary Precious Metals and Mercury Smelter Wet Air Pollution Control

Shierter wer in Fondtion Control		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce	of gold and silver
property	sme	elted
Lead	0.364	0.169
Mercury	0.195	0.078
Silver	0.377	0.156
Zinc	1.326	0.546
Gold	0.130	
Oil and grease	13.000	13.000
Total suspended solids	19.500	15.600
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 25-20 Primary Precious Metals and Mercury Silver Chloride Reduction Spent Solution

biller emerice reduction spent solution		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce o	f silver reduced in
property	solı	ution
Lead	0.112	0.052
Mercury	0.060	0.024
Silver	0.116	0.048
Zinc	0.408	0.168
Gold	0.040	
Oil and grease	4.000	4.000
Total suspended solids	6.000	4.800
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 25-21 Primary Precious Metals and Mercury Electrolytic Cells Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce	of gold refined
property	electrolytically	
Lead	5.544	2.574
Mercury	2.970	1.188
Silver	5.742	2.376
Zinc	20.200	8.316
Gold	1.980	
Oil and grease	198.000	198.000
Total suspended solids	297.000	237.600
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 25-22 Primary Precious Metals and Mercury Electrolyte Preparation Wet Air Pollution Control

	NSPS		
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/troy ounce o	f silver in the pro-	
property	duced e	duced electrolyte	
Lead	0.014	0.007	
Mercury	0.008	0.003	
Silver	0.015	0.006	
Zinc	0.051	0.021	
Gold	0.005		
Oil and grease	0.500	0.500	
Total suspended solids	0.750	0.600	
рН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 25-23 Primary Precious Metals and Mercury Calciner Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of mercury condensed	
Lead	6.160	2.860
Mercury	3.300	1.320
Silver	6.380	2.640
Zinc	22.440	9.240
Gold	2.200	
Oil and grease	220.000	220.000
Total suspended solids	330.000	264.000
pH	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

Table 25-24
Primary Precious Metals and Mercury
Calcine Quench Water

NSPS			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds	per million pounds)	
property	of mercury condensed		
Lead	4.928	2.288	
Mercury	2.640	1.056	
Silver	5.104	2.112	
Zinc	17.950	7.392	
Gold	1.760		
Oil and grease	176.000	176.000	
Total suspended solids	264.000	211.200	
рН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 25-25
Primary Precious Metals and Mercury
Calciner Stack Gas Contact Cooling Water

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of mercury condensed	
Lead	1.162	0.540
Mercury	0.623	0.249
Silver	1.204	0.498
Zinc	4.233	1.743
Gold	0.415	
Oil and grease	41.500	41.500
Total suspended solids	62.250	49.800
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 25-26 Primary Precious Metals and Mercury Condenser Blowdown

Condenser Browdown		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of mercury condensed	
Lead	3.864	1.794
Mercury	2.070	0.828
Silver	4.002	1.656
Zinc	14.080	5.796
Gold	1.380	
Oil and grease	138.000	138.000
Total suspended solids	207.000	165.600
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 25-27
Primary Precious Metals and Mercury
Mercury Cleaning Bath Water

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of mercury	condensed
Lead	0.392	0.182
Mercury	0.210	0.084
Silver	0.406	0.168
Zinc	1.428	0.588
Gold	0.140	
Oil and grease	14.000	14.000
Total suspended solids	21.000	16.800
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

NR 274.256 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.253.

Subchapter XXVI — Secondary Precious Metals

NR 274.26 Applicability; description of the secondary precious metals subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of precious metals at secondary precious metals facilities.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.261 Specialized definition. "Combined metals" means the total of gold, platinum and palladium.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.262 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 26-1 Secondary Precious Metals Furnace Wet Air Pollution Control

Turnace wet in Tonution Control			
BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant	mg/troy ounce of	precious metals, in-	
property	cluding silver, incinerated or smelted		
Copper	136.400	71.800	
Cyanide	20.820	8.616	
Zinc	104.800	43.800	
Ammonia (as N)	9,571.000	4,207.000	
Combined metals	21.54		
Total suspended solids	2,944.000	1,400.000	
pH	(1)	(1)	
(1) Within the range of 7.5 to 10.0 at all times.			

Table 26-2 Secondary Precious Metals Raw Material Granulation

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/troy ounce of	f precious metal in	
property	the granulate	d raw material	
Copper	12.050	6.340	
Cyanide	1.839	0.761	
Zinc	9.256	3.867	
Ammonia (as N)	845.100	371.500	
Combined metals	1.902		
Total suspended solids	259.900	123.600	
pН	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times.

Table 26-3 Secondary Precious Metals Spent Plating Solutions

Spent I lating boldtions			
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant		t plating solution	
property	used as a r	aw material	
Copper	1.900	1.000	
Cyanide	0.290	0.120	
Zinc	1.460	0.610	
Ammonia (as N)	133.300	58.600	
Combined metals	0.300		
Total suspended solids	41.000	19.500	
рН	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times.

Table 26-4 Secondary Precious Metals Spent Cyanide Stripping Solutions

Spent Cyanide Stripping Serations			
BPT Effluent Limitations			
Maximum for	Maximum for		
any 1 day	monthly average		
mg/troy ounce of	f gold produced by		
cyanide stripping			
7.030	3.700		
1.073	0.444		
5.402	2.257		
493.200	216.800		
1.110			
151.700	72.150		
(1)	(1)		
	Effluent Limitation Maximum for any 1 day mg/troy ounce of cyanide 7.030 1.073 5.402 493.200 1.110 151.700		

(1) Within the range of 7.5 to 10.0 at all times.

Table 26-5 Secondary Precious Metals Refinery Wet Air Pollution Control⁽¹⁾

Refinery wet ith Fondtion Condo		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce o	f precious metals, in-
property	cluding silver, produced in the	
	refinery	
Copper	39.900	21.000
Cyanide	6.090	2.520
Zinc	30.660	12.810
Ammonia (as N)	2,799.000	1,231.000
Combined metals	6.300	
Total suspended solids	861.000	409.500
рH	(2)	(2)

(a) Within the range of 7.5 to 10.0 at all times.

Table 26-6 Secondary Precious Metals Gold Solvent Extraction Raffinate and Wash Water

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant		f gold produced by	
property	solvent extraction		
Copper	1.197	0.630	
Cyanide	0.183	0.076	
Zinc	0.920	0.384	
Ammonia (as N)	83.980	36.920	
Combined metals	0.189		
Total suspended solids	25.830	12.290	
рН	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times.

Table 26-7 Secondary Precious Metals Gold Spent Electrolyte

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce of	gold produced by
property	electrolysis	
Copper	0.017	0.009
Cyanide	0.003	0.001
Zinc	0.103	0.005
Ammonia (as N)	0.160	0.510
Combined metals	0.003	
Total suspended solids	0.357	0.170
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 26-8
Secondary Precious Metals
Gold Precipitation and Filtration

Gold I recipitation and I nitration		
BPT Effluent Limitations		
Maximum for Maximum for		
	any 1 day	monthly average
Pollutant or pollutant		-
property	mg/troy ounce of	f gold precipitated
Copper	8.360	4.400
Cyanide	1.276	0.528
Zinc	6.424	2.684
Ammonia (as N)	586.500	257.800
Combined metals	1.320	
Total suspended solids	180.400	85.800
pН	(1)	(1)
(1) Within the range of 7.5 to 10.0 at all times.		

Table 26-9
Secondary Precious Metals
Platinum Precipitation and Filtration

Platinum Precipitation and Filtration		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ound	ce of platinum
property	precipitated	
Copper	9.880	5.200
Cyanide	1.508	0.624
Zinc	7.592	3.172
Ammonia (as N)	693.200	304.700
Combined metals	1.560	
Total suspended solids	213.200	101.400
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 26-10 Secondary Precious Metals Palladium Precipitation and Filtration

i anadium i recipitation and i intation		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounc	e of palladium
property	precipitated	
Copper	11.400	6.000
Cyanide	1.740	0.720
Zinc	8.760	3.660
Ammonia (as N)	799.800	351.600
Combined metals	1.800	
Total suspended solids	246.000	117.000
pH .	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 26-11 Secondary Precious Metals Other Platinum Group Metals Precipitation and Filtration

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce	of other platinum
property	group metals precipitated	
Copper	9.880	5.200
Cyanide	1.508	0.624
Zinc	7.592	3.172
Ammonia (as N)	693.200	304.700
Combined metals	1.560	
Total suspended solids	213.200	101.400
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 26-12 Secondary Precious Metals Spent Solution for PGC Salt Production

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce of	gold contained in
property	PGC 1	product
Copper	1.710	0.900
Cyanide	0.261	0.108
Zinc	1.314	0.549
Ammonia (as N)	120.000	52.740
Combined metals	0.270	
Total suspended	36.900	17.550
solids		
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 26-13 Secondary Precious Metals Equipment and Floor Wash

Equipment and Ploor wash			
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
	mg/troy ounce of	precious metals, in-	
Pollutant or pollutant	cluding silver, produced in the		
property	refinery		
Copper	0.000	0.000	
Cyanide	0.000	0.000	
Zinc	0.000	0.000	
Ammonia (as N)	0.000	0.000	
Combined metals	0.000	0.000	
Total suspended solids	0.000	0.000	
pН	(1)	(1)	

 $^{^{\}left(1\right)}$ Within the range of 7.5 to 10.0 at all times.

Table 26-14 Secondary Precious Metals Preliminary Treatment

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/troy ounce o	f precious metals,
Pollutant or pollutant	metals produc	ed through this
property	operation	
Copper	95.000	50.000
Cyanide	14.500	6.000
Zinc	73.000	30.500
Ammonia (as N)	6,665.000	2,930.000
Combined metals	15.000	
Total suspended solids	2,050.000	975.000
рН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.263 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 26-15 Secondary Precious Metals Furnace Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/troy ounce of pre-	cious metals, includ-
tant property	ing silver, incinerated or smelted	
Copper	5.760	2.745
Cyanide	0.900	0.360
Zinc	4.590	1.890
Combined metals	1.350	
Ammonia (as N)	599.900	263.700

Table 26-16 Secondary Precious Metals Raw Material Granulation

Raw Material Grandlation			
BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
Pollutant or pollu-	mg/troy ounce of pr		
tant property	granulated raw material		
Copper	0.819	0.390	
Cyanide	0.128	0.051	
Zinc	0.653	0.269	
Combined metals	0.192		
Ammonia (as N)	85.310	37.500	

Table 26-17 Secondary Precious Metals Spent Plating Solutions

Spent Flating Solutions		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/liter of spent plat	ing solution used as
tant property	a raw material	
Copper	1.280	0.610
Cyanide	0.200	0.080
Zinc	1.020	0.420
Combined metals	0.300	
Ammonia (as N)	133.300	58.600

Table 26-18 Secondary Precious Metals Spent Cyanide Stripping Solutions

BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/troy ounce of	gold produced by	
tant property	cyanide s	cyanide stripping	
Copper	4.736	2.257	
Cyanide	0.740	0.296	
Zinc	3.774	1.554	
Combined metals	1.110		
Ammonia (as N)	493.200	216.800	

Table 26-19 Secondary Precious Metals Refinery Wet Air Pollution Control⁽¹⁾

BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/troy ounce of pred		
tant property	cluding silver, produced in the refinery		
Copper	1.280	0.610	
Cyanide	0.200	0.080	
Zinc	1.020	0.420	
Combined metals	0.300		
Ammonia (as N)	133.300	58.600	

(1) This allowance applies to either acid or alkaline wet air pollution control scrubbers. If both acid and alkaline wet air pollution control scrubbers are present in a particular facility, the same allowance applies to each.

Table 26-20 Secondary Precious Metals Gold Solvent Extraction Raffinate and Wash Water

BAT Effluent Limitations		
•	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/troy ounce of go	ld produced by sol-
tant property	vent extraction	
Copper	0.806	0.384
Cyanide	0.126	0.050
Zinc	0.643	0.265
Combined metals	0.189	
Ammonia (as N)	83.980	36.920

Table 26-21 Secondary Precious Metals Gold Spent Electrolyte

BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/troy ounce of gold produced by		
tant property	electrolysis		
Copper	0.0111	0.0053	
Cyanide	0.0017	0.0007	
Zinc	0.0089	0.0037	
Combined metals	0.0030		
Ammonia (as N)	1.1600	0.5100	

Table 26-22 Secondary Precious Metals Gold Precipitation and Filtration

	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	•	
tant property	mg/troy ounce of gold precipitated	
Copper	5.632	2.684
Cyanide	0.880	0.352
Zinc	4.488	1.848
Combined metals	1.320	
Ammonia (as N)	586.500	257.800

Table 26-23
Secondary Precious Metals
Platinum Precipitation and Filtration

Flatilitili Frecipitation and Filitation			
BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
Pollutant or pollu-	mg/troy ounce of pla	atinum precipitated	
tant property			
Copper	6.656	3.172	
Cyanide	1.040	0.416	
Zinc	5.304	2.184	
Combined metals	1.560		
Ammonia (as N)	693.200	304.700	

Table 26-24 Secondary Precious Metals Palladium Precipitation and Filtration

BAT Effluent Limitations		
Maximum for any Maximum for 1 day monthly average		
Pollutant or pollu-		
tant property	mg/troy ounce of palladium precipitated	
Copper	7.680	3.660
Cyanide	1.200	0.480
Zinc	6.120	2.520
Combined metals	1.800	
Ammonia (as N)	799.800	351.600

Table 26-25 Secondary Precious Metals Other Platinum Group Metals Precipitation and Filtration

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	- mg/troy ounce of other platinum group	
tant property	metals precipitated	
Copper	6.656	3.172
Cyanide	1.040	0.416
Zinc	5.304	2.184
Combined metals	1.560	
Ammonia (as N)	693.200	304.700

Table 26-26 Secondary Precious Metals Spent Solution for PGC Salt Production

BAT Effluent Limitations		
	Maximum for any 1 Maximum for	
	day	monthly average
Pollutant or pollu-	mg/troy ounce of gol	d contained in PGC
tant property	prod	uct
Copper	1.152	0.549
Cyanide	0.180	0.072
Zinc	0.918	0.376
Combined metals	0.270	
Ammonia (as N)	120.000	52.740

Table 26-27 Secondary Precious Metals Equipment and Floor Wash

BAT Effluent Limitations		
	Maximum for any 1 Maximum for	
	day	monthly average
Pollutant or pollu-	mg/troy ounce of pred	
tant property	ing silver, produced in the refinery	
Copper	0.000	0.000
Cyanide	0.000	0.000
Zinc	0.000	0.000
Combined metals	0.000	
Ammonia (as N)	0.000	0.000

Table 26-28 Secondary Precious Metals Preliminary Treatment

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
day	monthly average	
ollu- mg/troy ounce of total precious metals		
produced through this operation		
64.000	30.500	
10.000	4.000	
51.000	21.000	
15.000		
6,665.000	2,930.000	
	Maximum for any 1 day mg/troy ounce of to produced throug 64.000 10.000 51.000 15.000	

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.264 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 26-29 Secondary Precious Metals Furnace Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce of	precious metals, in-
property	cluding silver, inc	cinerated or smelted
Copper	5.760	2.745
Cyanide	0.900	0.360
Zinc	4.590	1.890
Combined metals	1.350	
Ammonia (as N)	599.900	263.700
Total suspended solids	67.500	54.000
рН	(1)	(1)

(1) Within the range of 7.5 to 10 at all times.

Table 26-30 Secondary Precious Metals Raw Material Granulation

	NSPS		
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/troy ounce of	f precious metal in	
property	the granulated raw material		
Copper	0.819	0.390	
Cyanide	0.128	0.051	
Zinc	0.653	0.269	
Combined metals	0.192		
Ammonia (as N)	85.310	37.500	
Total suspended solids	9.600	7.680	
pH	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10 at all times.

Table 26-31 Secondary Precious Metals Spent Plating Solutions

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/liter of spent p	lating solution used
property	as a raw	material
Copper	1.280	0.610
Cyanide	0.200	0.080
Zinc	1.020	0.420
Combined metals	0.300	
Ammonia (as N)	133.300	58.600
Total suspended solids	15.000	12.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10 at all times.

Table 26-32 Secondary Precious Metals Spent Cyanide Stripping Solutions

Spent Cyanide Stripping Solutions		
NSPS		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce of gold produced by	
property	cyanide stripping	
Copper	4.736	2.257
Cyanide	0.740	0.296
Zinc	3.774	1.554
Combined metals	1.110	
Ammonia (as N)	493.200	216.800
Total suspended solids	55.500	44.400
pН	(1)	(1)

Within the range of 7.5 to 10 at all times.

Table 26-33 Secondary Precious Metals Refinery Wet Air Pollution Control⁽¹⁾

NSPS		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/troy ounce of	precious metals, in-
Pollutant or pollutant	cluding silver,	produced in the
property	ref	inery
Copper	1.280	0.610
Cyanide	0.200	0.080
Zinc	1.020	0.420
Combined metals	0.300	
Ammonia (as N)	133.300	58.600
Total suspended solids	15.000	12.000
pН	(2)	(2)

⁽i) This allowance applies to either acid or alkaline wet air pollution control scrubbers. If both acid and alkaline wet air pollution control scrubbers are present in a particular facility, the same allowance applies to each. (2) Within the range of 7.5 to 10 at all times.

Table 26-34 Secondary Precious Metals Gold Solvent Extraction Raffinate and Wash Water

	NSPS	
•	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		f gold produced by
property	solvent	extraction
Copper	0.806	0.384
Cyanide	0.126	0.050
Zinc	0.643	0.265
Combined metals	0.189	
Ammonia (as N)	83.980	36.920
Total suspended solids	9.450	7.560
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10 at all times.

Table 26-35 Secondary Precious Metals Gold Spent Electrolyte

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce of	f gold produced by
property	electrolysis	
Copper	0.011	0.005
Cyanide	0.002	0.001
Zinc	0.009	0.004
Combined metals	0.003	
Ammonia (as N)	1.160	0.510
Total suspended solids	0.131	0.104
pH	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10 at all times.

Table 26-36 Secondary Precious Metals Gold Precipitation and Filtration

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		
property	mg/troy ounce o	f gold precipitated
Copper	5.632	2.684
Cyanide	0.880	0.352
Zinc	4.488	1.848
Combined metals	1.320	
Ammonia (as N)	586.500	257.800
Total suspended solids	66.000	52.800
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10 at all times.

Table 26-37 Secondary Precious Metals Platinum Precipitation and Filtration

	· · I · · · · · · · · · · · · · · · · ·	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy oun	ce of platinum
property	preci	pitated
Copper	6.656	3.172
Cyanide	1.040	0.416
Zinc	5.304	2.184
Combined metals	1.560	
Ammonia (as N)	693.200	304.700
Total suspended solids	78.000	62.400
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10 at all times.

Table 26-38
Secondary Precious Metals
Palladium Precipitation and Filtration

Tanadium Tecipitation and Thiration		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ound	e of palladium
property	precipitated	
Copper	7.680	3.660
Cyanide	1.200	0.480
Zinc	6.120	2.520
Combined metals	1.800	
Ammonia (as N)	799.800	351.600
Total suspended solids	90.000	72.000
pH	(1)	(1)
(1)		

(1) Within the range of 7.5 to 10 at all times.

Table 26-39
Secondary Precious Metals
Other Platinum Group Metals Precipitation and Filtration

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		of other platinum
property	group metals precipitated	
Copper	6.656	3.172
Cyanide	1.040	0.416
Zinc	5.304	2.184
Combined metals	1.560	
Ammonia (as N)	693.200	304.700
Total suspended solids	78.000	62.400
pН	(1)	(1)

(1) Within the range of 7.5 to 10 at all times.

Table 26-40 Secondary Precious Metals Spent Solution for PGC Salt Production

- P		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/troy ounce of	gold contained in
property	PGC 1	product
Copper	1.152	0.549
Cyanide	0.180	0.072
Zinc	0.918	0.378
Combined metals	0.270	
Ammonia (as N)	120.000	52.740
Total suspended solids	13.500	10.800
pН	(1)	(1)

(1) Within the range of 7.5 to 10 at all times.

Table 26-41 Secondary Precious Metals Equipment and Floor Wash

Equipment and Floor wash		
NSPS		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/troy ounce of	precious metals, in-
Pollutant or pollutant	cluding silver, produced in the	
property	refinery	
Copper	0.000	0.000
Cyanide	0.000	0.000
Zinc	0.000	0.000
Combined metals	0.000	
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

(1) Within the range of 7.5 to 10 at all times.

Table 26-42 Secondary Precious Metals Preliminary Treatment

	NSPS	
	Maximum for any 1 day	Maximum for monthly average
Pollutant or pollutant		total precious met-
property	als produced through this operation	
Copper	64.000	50.000
Cyanide	10.000	6.000
Zinc	51.000	30.500
Ammonia (as N)	6,665.000	2,930.000
Combined metals	15.000	
Total suspended solids	750.000	600.000
pH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.265 Pretreatment standards for existing sources. Except as provided in s. NR 211.13, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.263.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.266 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.263.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XXVII — Primary Rare Earth Metals

NR 274.27 Applicability; description of the primary rare earth metals subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of rare earth metals and mischmetal by primary rare earth metals facilities which process rare earth metal oxides, chlorides and fluorides.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.271 Specialized definitions. The following definitions apply to the terms used in this subchapter:

- (1) "Rare earth metals" means the elements scandium, yttrium and lanthanum to lutetium, inclusive.
- **(2)** "Mischmetal" means a rare earth metal alloy comprised of the natural mixture of rare earths to 94% to 99% with the remainder of the alloy including traces of other elements and 1% to 2% iron.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.274 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 27-1 Primary Rare Earth Metals Dryer Vent Water Quench and Scrubber

NSPS	
Maximum for	Maximum for
any 1 day	monthly average
mg/kg (pounds p	per million pounds)
of mischmetal p	roduced from wet
rare earth chlorides	
0.042	0.042
1.544	0.626
1.168	0.542
2.295	1.544
62.600	50.080
(1)	(1)
	Maximum for any 1 day mg/kg (pounds p of mischmetal p rare eart 0.042 1.544 1.168 2.295 62.600

Within the range of 7.5 to 10.0 at all times.

Table 27-2
Primary Rare Earth Metals
Dryer Vent Caustic Wet Air Pollution Control

Dryci vent caustic wet An Tonation Control		
NSPS		
	Maximum for	Maximum for
	any 1 day	monthly average
		er million pounds)
Pollutant or pollutant	of mischmetal p	roduced from wet
property	rare earth chlorides	
Hexachlorobenzene	0.007	0.007
Chromium	0.272	0.110
Lead	0.206	0.095
Nickel	0.404	0.272
Total suspended solids	11.010	8.808
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 27-3 Primary Rare Earth Metals Electrolytic Cell Water Quench and Scrubber

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of total misch	metal produced
Hexachlorobenzene	0.094	0.094
Chromium	3.474	1.409
Lead	2.629	1.221
Nickel	5.165	3.474
Total suspended solids	140.900	112.700
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 27-4
Primary Rare Earth Metals
Electrolytic Cell Caustic Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of total misch	metal produced
Hexachlorobenzene	0.000	0.000
Chromium	0.000	0.000
Lead	0.000	0.000
Nickel	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 27-5
Primary Rare Earth Metals
Sodium Hypochlorite Filter Backwash

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of total misch	metal produced
Hexachlorobenzene	0.004	0.004
Chromium	0.134	0.054
Lead	0.101	0.047
Nickel	0.199	0.134
Total suspended solids	5.430	4.334
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.275 Pretreatment standards for existing

sources. Except as provided in s. NR 211.13, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the following PSES:

Table 27-6
Primary Rare Earth Metals
Dryer Vent Water Quench and Scrubber

J		
PSES		
Maximum for	Maximum for	
any 1 day	monthly average	
mg/kg (pounds p	er million pounds)	
of mischmetal p	roduced from wet	
rare earth chlorides		
0.042	0.042	
1.544	0.626	
1.168	0.542	
2.295	1.544	
	Maximum for any 1 day mg/kg (pounds p of mischmetal p rare earth 0.042 1.544 1.168	

Table 27-7
Primary Rare Earth Metals
Dryer Vent Caustic Wet Air Pollution Control

Dijer vent caastie wet in remainer control		
	PSES	
	Maximum for	Maximum for
	any 1 day	monthly average
		er million pounds)
Pollutant or pollutant	of mischmetal p	roduced from wet
property	rare earth chlorides	
Hexachlorobenzene	0.007	0.007
Chromium	0.272	0.110
Lead	0.206	0.095
Nickel	0.404	0.272

Table 27-8
Primary Rare Earth Metals
Electrolytic Cell Water Quench and Scrubber

PSES		
Maximum for	Maximum for	
any 1 day	monthly average	
mg/kg (pounds p	er million pounds)	
of total misch	metal produced	
0.094	0.094	
3.474	1.409	
2.629	1.221	
5.165	3.474	
	Maximum for any 1 day mg/kg (pounds p of total misch 0.094 3.474 2.629	

Table 27-9
Primary Rare Earth Metals
Electrolytic Cell Caustic Wet Air Pollution Control

PSES		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of total mischmetal produced	
Hexachlorobenzene	0.000	0.000
Chromium	0.000	0.000
Lead	0.000	0.000
Nickel	0.000	0.000

Table 27-10 Primary Rare Earth Metals Sodium Hypochlorite Filter Backwash

	PSES	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of total misch	metal produced
Hexachlorobenzene	0.004	0.004
Chromium	0.134	0.054
Lead	0.101	0.047
Nickel	0.199	0.134

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.276 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the standards set forth in s. NR 274.275.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XXVIII — Secondary Tantalum

NR 274.28 Applicability; description of the secondary tantalum subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of tantalum at secondary tantalum facilities.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.282 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 28-1 Secondary Tantalum Tantalum Alloy Leach and Rinse

BPT Effluent Limitations			
	Maximum for Maximum fo		
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	per million pounds)	
property	of tantalum powder produced		
Copper	438.100	230.600	
Lead	96.850	46.120	
Nickel	442.800	292.900	
Zinc	336.700	140.700	
Tantalum	103.800		
Total suspended solids	9,455.000	4,497.000	
рН	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times

Table 28-2 Secondary Tantalum Capacitor Leach and Rinse

Cupacitor Beach and Tame		
BPT Effluent Limitations		
	Maximum for Maximum for	
	any 1 day	monthly average
mg/kg (pounds per million pounds)		
Pollutant or pollutant	of tantalum pov	der produced from
property	leaching	
Copper	38.380	20.200
Lead	8.484	4.040
Nickel	38.780	25.650
Zinc	29.490	12.320
Tantalum	9.090	
Total suspended solids	828.200	393.900
pH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times

Table 28-3 Secondary Tantalum Tantalum Sludge Leach and Rinse

BPT Effluent Limitations		
	Maximum for Maximum for	
	any 1 day	monthly average
	mg/kg (pounds	per million pounds)
Pollutant or pollutant	of equivalent pu	re tantalum powder
property	produced	
Copper	390.100	205.300
Lead	86.230	41.060
Nickel	394.200	260.700
Zinc	299.700	125.200
Tantalum	92.390	
Total suspended solids	8,417.000	4,003.000
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times

Table 28-4 Secondary Tantalum Tantalum Powder Acid Wash and Rinse

BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant		er million pounds)	
property	of tantalum powder produced		
Copper	0.665	0.350	
Lead	0.147	0.070	
Nickel	0.672	0.445	
Zinc	0.511	0.214	
Tantalum	0.158		
Total suspended solids	14.350	6.825	
рН	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times

Table 28-5 Secondary Tantalum Leaching Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
	mg/kg (pounds p	per million pounds)	
Pollutant or pollutant	of equivalent pur	re tantalum powder	
property	produced		
Copper	9.272	4.880	
Lead	2.050	0.976	
Nickel	9.370	6.198	
Zinc	7.125	2.977	
Tantalum	2.196		
Total suspended solids	200.100	95.160	
pH	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.283 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 28-6 Secondary Tantalum Tantalum Alloy Leach and Rinse

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	tantalum powder produced	
Copper	295.200	140.700
Lead	64.570	29.980
Nickel	126.800	85.320
Zinc	235.200	96.850
Tantalum	103.800	

Table 28-7 Secondary Tantalum Capacitor Leach and Rinse

T		
BAT Effluent Limitations		
Maximum for any 1 Maximum		Maximum for
	day	monthly average
mg/kg (pounds per million pounds) of		
Pollutant or pollu-	tantalum powder produced from	
tant property	leaching	
Copper	25.860	12.320
Lead	5.656	2.626
Nickel	11.110	7.474
Zinc	20.600	8.484
Tantalum	9.090	

Table 28-8 Secondary Tantalum Tantalum Sludge Leach and Rinse

BAT Effluent Limitations			
Maximum for any 1 Maximum for		Maximum for	
	day	monthly average	
mg/kg (pounds per million pounds) of			
Pollutant or pollu-		equivalent pure tantalum powder	
tant property	produced		
Copper	262.800	125.200	
Lead	57.480	26.690	
Nickel	112.900	75.960	
Zinc	209.400	86.230	
Tantalum	92.390		

Table 28-9 Secondary Tantalum Tantalum Powder Acid Wash and Rinse

BAT Effluent Limitations		
Maximum for any 1 Maximum for		Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	tantalum powder produced	
Copper	0.448	0.214
Lead	0.098	0.046
Nickel	0.193	0.130
Zinc	0.357	0.147
Tantalum	0.158	

Table 28-10 Secondary Tantalum Leaching Wet Air Pollution Control

Zeueining weerin remaileir centrer		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		Maximum for
	day	monthly average
mg/kg (pounds per million pounds) of		
Pollutant or pollu-	equivalent pure tantalum powder	
tant property	produced	
Copper	6.246	2.977
Lead	1.366	0.634
Nickel	2.684	1.806
Zinc	4.978	2.050
Tantalum	2.196	
H' C D ' A	1 1001 N 400 CC 4.1	0.1

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.284 New source performance standards. Any new source subject to this subchapter shall achieve the following standards:

Table 28-11 Secondary Tantalum Tantalum Alloy Leach and Rinse

14114414111	Time j Beach and I	111100	
	NSPS		
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of tantalum powder produced		
Copper	295.200	140.700	
Lead	64.570	29.980	
Nickel	126.800	85.320	
Zinc	235.200	96.850	
Tantalum	103.800		
Total suspended solids	3,459.000	2,767.000	
pН	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times

Table 28-12 Secondary Tantalum Capacitor Leach and Rinse

Capacitor Beach and Tenise		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of tantalum power	der produced from
property	leaching	
Copper	25.860	12.320
Lead	5.656	2.626
Nickel	11.110	7.474
Zinc	20.600	8.484
Tantalum	9.090	
Total suspended solids	303.000	242.400
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

Table 28-13
Secondary Tantalum
Tantalum Sludge Leach and Rinse

Tantalum Sludge Leach and Rinse		
	NSPS	
	Maximum for any	Maximum for
	1 day	monthly average
	mg/kg (pounds per	million pounds) of
Pollutant or pollutant	equivalent pure t	antalum powder
property	produced	
Copper	262.800	125.200
Lead	57.480	26.690
Nickel	112.900	75.960
Zinc	209.400	86.230
Tantalum	92.390	
Total suspended solids	3,080.000	2,464.000
pН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times

Table 28-14 Secondary Tantalum Tantalum Powder Acid Wash and Rinse

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of tantalum powder produced	
Copper	0.448	0.214
Lead	0.098	0.046
Nickel	0.193	0.130
Zinc	0.357	0.147
Tantalum	0.158	
Total suspended solids	5.250	4.200
рН	(1)	(1)

 $^{^{\}left(1\right)}$ Within the range of 7.5 to 10.0 at all times

Table 28-15 Secondary Tantalum Leaching Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of equivalent pur	e tantalum powder
property	produced	
Copper	6.246	2.977
Lead	1.366	0.634
Nickel	2.684	1.806
Zinc	4.978	2.050
Tantalum	2.196	
Total suspended solids	73.200	58.560
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.286 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.283.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XXIX — Secondary Tin

NR 274.29 Applicability; description of the secondary tin subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of tin at secondary tin facilities which utilize either pyrometalurgical or hydrometalurgical processes to recover tin from secondary materials.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.292 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 29-1 Secondary Tin Tin Smelter Sulfur Dioxide Scrubber

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant		er million pounds)	
property	of crude tapped t	in metal produced	
Arsenic	19.220	8.554	
Lead	3.863	1.840	
Iron	11.040	5.611	
Tin	3.495	2.024	
Total suspended solids	377.100	179.400	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

Table 29-2 Secondary Tin Dealuminizing Rinse

Dealumnizing Kinse			
BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds per million pounds)		
property	of dealuminized scrap produced		
Lead	0.015	0.007	
Cyanide	0.010	0.004	
Fluoride	1.225	0.700	
Tin	0.013	0.008	
Total suspended solids	1.435	0.683	
pH	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

Table 29-3 Secondary Tin Tin Mud Acid Neutralization Filtrate

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
	mg/kg (pounds p	er million pounds)	
Pollutant or pollutant	of neutralized dewatered tin mud		
property	produced		
Lead	2.120	1.009	
Cyanide	1.464	0.606	
Fluoride	176.600	100.400	
Tin	1.918	1.110	
Total suspended solids	206.900	98.420	
pH .	(1)	(1)	

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times

Table 29-4
Secondary Tin
Tin Hydroxide Was

Tili Hydroxide wash			
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of tin hydro	xide washed	
Lead	5.020	2.391	
Cyanide	3.466	1.434	
Fluoride	418.400	237.900	
Tin	4.542	2.630	
Total suspended solids	490.100	233.100	
pН	(1)	(1)	

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times

Table 29-5 Secondary Tin Spent Electrowinning Solution From New Scrap

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of cathode tin produced	
Lead	7.056	3.360
Cyanide	4.872	2.016
Fluoride	588.000	334.300
Tin	6.384	3.696
Total suspended solids	688.800	327.600
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

Table 29-6 Secondary Tin Spent Electrowinning Solution From Municipal Solid Waste

BPT Effluent Limitations		
Maximum for Maximum for		
	any 1 day	monthly average
	mg/kg (pounds pe	r million pounds)
Pollutant or pollutant	of municipal solid	waste scrap used
property	as a raw material	
Lead	0.050	0.024
Cyanide	0.035	0.014
Fluoride	4.165	2.368
Tin	0.045	0.026
Total suspended solids	4.879	2.321
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

Table 29-7
Secondary Tin
Hydroxide Supernatant From Scrap

In Hydroxide Supernatant From Scrap			
BPT Effluent Limitations			
Maximum for Maximum for			
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of tin metal recovered from scrap		
Lead	23.370	11.130	
Cyanide	16.140	6.677	
Fluoride	1,947.000	1,107.000	
Tin	21.140	12.240	
Total suspended solids	2,281.000	1,085.000	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

Table 29-8 Secondary Tin Tin Hydroxide Supernatant From Plating Solutions and Sludges

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of tin metal reco	vered from plating
property	solutions and sludges	
Lead	48.30	23.00
Cyanide	33.35	13.80
Fluoride	4,025.00	2,289.00
Tin	43.70	25.30
Total suspended solids	4,715.00	2,243.00
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

Table 29-9 Secondary Tin Tin Hydroxide Filtrate

Till Hydroxide Filtrate			
BPT Effluent Limitations			
Maximum for Maximum for			
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of crude tapped tin metal produced		
Lead	10.520	5.009	
Cyanide	7.263	3.005	
Fluoride	876.500	498.400	
Tin	9.517	5.510	
Total suspended solids	1,027.000	488.400	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.293 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 29-10 Secondary Tin Tin Smelter Sulfur Dioxide Scrubber

Till Shieller Sulful Bloxide Serubber			
BAT Effluent Limitations			
•	Maximum for any 1 Maximum for		
	day	monthly average	
Pollutant or pollu- mg/kg (pounds per million pounds) of			
tant property	crude tapped tin metal produced		
Arsenic	12.790	5.703	
Lead	2.575	1.196	
Iron	11.040	5.611	
Tin	3.495	2.024	

Table 29-11 Secondary Tin Dealuminizing Rinse

BAT Effluent Limitations		
Maximum for any Maximum for		
	1 day	monthly average
Pollutant or	mg/kg (pounds per n	nillion pounds) of
pollutant property	dealuminized scrap produced	
Lead	0.010	0.005
Cyanide	0.007	0.003
Fluoride	1.225	0.697
Tin	0.013	0.008

Table 29-12 Secondary Tin Tin Mud Acid Neutralization Filtrate

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	neutralized dewatered tin mud produced	
Lead	1.413	0.656
Cyanide	1.009	0.404
Fluoride	176.600	100.400
Tin	1.918	1.110

Table 29-13 Secondary Tin Tin Hydroxide Wash

Till Tij Gronide Wasii		
BAT Effluent Limitations		
Maximum for any 1	Maximum for	
day	monthly average	
mg/kg (pounds per m	illion pounds) of tin	
hydroxide washed		
3.347	1.554	
2.391	0.956	
418.400	237.900	
4.542	2.630	
	AT Effluent Limitation Maximum for any 1 day mg/kg (pounds per m hydroxide 3.347 2.391 418.400	

Table 29-14 Secondary Tin Spent Electrowinning Solution From New Scrap

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	
tant property	cathode tin produced	
Lead	4.704	2.184
Cyanide	3.360	1.344
Fluoride	588.000	334.300
Tin	6.384	3.696

Table 29-15 Secondary Tin

Spent Electrowinning Solution From Municipal Solid Waste			
BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
mg/kg (pounds per million pounds) of			
Pollutant or pollu-	municipal solid waste scrap used as a raw		
tant property	material		
Lead	0.033	0.015	
Cyanide	0.024	0.010	
Fluoride	4.165	2.368	
Tin	0.045	0.026	

Table 29-16 Secondary Tin

Tili Hydroxide Supernatant From Scrap		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of tin	
tant property	metal recovered from scrap	
Lead	15.580	7.233
Cyanide	11.130	4.451
Fluoride	1,947.000	1,107.000
Tin	21.140	21.140

Table 29-17 Secondary Tin Tin Hydroxide Supernatant From Plating Solutions and Sludges

BAT Effluent Limitations			
	Maximum for any 1	Maximum for any 1 Maximum for	
	day	monthly average	
	mg/kg (pounds per m	illion pounds) of tin	
Pollutant or pollu-	metal recovered from plating solutions		
tant property	and sludges		
Lead	32.20	14.95	
Cyanide	23.00	9.20	
Fluoride	4,025.00	2,289.00	
Tin	43.70	25.30	

Table 29-18 Secondary Tin Tin Hydroxide Filtrate

BAT Effluent Limitations		
Maximum for any 1 Maximum for		Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	crude tapped tin metal produced	
Lead	7.012	3.256
Cyanide	5.009	2.004
Fluoride	876.500	498.400
Tin	9.517	5.510

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.294 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 29-19 Secondary Tin Tin Smelter Sulfur Dioxide Scrubber

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of crude tapped t	in metal produced
Arsenic	12.790	5.703
Lead	2.575	1.196
Iron	11.040	5.611
Tin	3.495	2.024
Total suspended solids	138.000	110.400
рH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 29-20 Secondary Tin Dealuminizing Rinse

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of dealuminize	d scrap produced
Lead	0.010	0.005
Cyanide	0.007	0.003
Fluoride	1.225	0.697
Tin	0.013	0.008
Total suspended solids	0.525	0.420
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times

Table 29-21 Secondary Tin Tin Mud Acid Neutralization Filtrate

	NSPS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	neutralized dewatere	d tin mud produced
Lead	1.413	0.656
Cyanide	1.009	0.404
Fluoride	176.600	100.400
Tin	1.918	1.110
Total suspended	75.710	60.560
solids		
pН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times

Table 29-22 Secondary Tin Tin Hydroxide Wash

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of tin hydro	oxide washed
Lead	3.347	1.554
Cyanide	2.391	0.956
Fluoride	418.400	237.900
Tin	4.542	2.630
Total suspended solids	179.300	143.400
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times

Table 29-23 Secondary Tin Spent Electrowinning Solution From New Scrap

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of cathode	tin produced
Lead	4.704	2.184
Cyanide	3.360	1.344
Fluoride	588.000	334.300
Tin	6.384	3.696
Total suspended solids	252.000	201.600
pH	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times

Table 29-24 Secondary Tin

Spent Electrowinning Solution From Municipal Solid Waste

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of municipal soli	d waste scrap used
property	as a raw material	
Lead	0.033	0.015
Cyanide	0.024	0.010
Fluoride	4.165	2.368
Tin	0.045	0.026
Total suspended solids	1.785	1.428
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

Table 29-25 Secondary Tin Tin Hydroxide Supernatant From Scrap

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tin metal reco	overed from scrap
Lead	15.580	7.233
Cyanide	11.130	4.451
Fluoride	1,947.000	1,107.000
Tin	21.140	21.240
Total suspended solids	834.600	667.700
pН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times

Table 29-26 Secondary Tin Tin Hydroxide Supernatant From Plating Solutions and Sludges

	NSPS	_
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of tin metal reco	vered from plating
property	solutions and sludges	
Lead	32.20	14.95
Cyanide	23.00	9.20
Fluoride	4,025.00	2,289.00
Tin	43.70	25.30
Total suspended solids	1,725.00	1,380.00
рН	(1)	(1)

 $^{^{(1)}}$ Within the range of 7.5 to 10.0 at all times

DEPARTMENT OF NATURAL RESOURCES

Table 29-27 Secondary Tin Tin Hydroxide Filtrate

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of crude tapped tin metal produced	
Lead	7.012	3.256
Cyanide	5.009	2.004
Fluoride	876.500	498.400
Tin	9.517	5.510
Total suspended solids	375.700	300.500
рН	(1)	(1)

Within the range of 7.5 to 10.0 at all times

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.295 Pretreatment standards for existing sources. Except as provided in s. NR 211.13, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.293.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.296 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.293.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XXX — Primary and Secondary Titanium

NR 274.30 Applicability; description of the primary and secondary titanium subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of titanium or cobalt at secondary titanium and cobalt facilities which process titanium or titanium carbide scrap raw materials.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.302 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 30-1
Primary and Secondary Titanium
Chlorination Off-gas Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of titanium tetrachloride produced		
Chromium	0.412	0.168	
Lead	0.393	0.187	
Nickel	1.797	1.187	
Titanium	0.880	0.384	
Oil and grease	18.720	11.230	
Total suspended solids	38.380	18.250	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

Table 30-2
Primary and Secondary Titanium
Chlorination Area-vent Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of titanium tetrachloride produced		
Chromium	0.458	0.187	
Lead	0.437	0.208	
Nickel	1.997	1.321	
Titanium	0.978	0.426	
Oil and grease	20.800	12.480	
Total suspended solids	42.640	20.280	
pH	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times

Table 30-3
Primary and Secondary Titanium
Titanium Tetrachloride Handling Wet Air Pollution Control

BPT Effluent Limitations		
BP1 Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of titanium tetrachloride handled	
Chromium	0.082	0.034
Lead	0.079	0.037
Nickel	0.359	0.237
Titanium	0.176	0.077
Oil and grease	3.740	2.244
Total suspended solids	7.667	3.647
pН	(1)	(1)

Within the range of 7.5 to 10.0 at all times

Table 30-4 Primary and Secondary Titanium Reduction Area Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of titanium produced	
Chromium	18.170	7.435
Lead	17.350	8.261
Nickel	79.300	52.450
Titanium	38.820	16.930
Oil and grease	826.100	495.600
Total suspended solids	1,693.000	805.400
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times

Table 30-5 Primary and Secondary Titanium Melt Cell Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for Maximum for	
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of titanium produced	
Chromium	9.352	3.826
Lead	8.927	4.251
Nickel	40.810	26.990
Titanium	19.980	8.714
Oil and grease	425.100	255.000
Total suspended solids	871.400	414.500
pH .	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times

Table 30-6 Primary and Secondary Titanium Chlorine Liquefaction Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of titanium produced		
Chromium	130.900	53.560	
Lead	125.000	59.510	
Nickel	571.300	377.900	
Titanium	279.700	122.000	
Oil and grease	5,951.000	3,571.000	
Total suspended solids	12,200.000	5,702.000	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

Table 30-7 Primary and Secondary Titanium Sodium Reduction Container Reconditioning Wash Water

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of titanium produced	
Chromium	0.564	0.231
Lead	0.538	0.256
Nickel	2.461	1.628
Titanium	1.205	0.526
Oil and grease	25.640	15.380
Total suspended solids	52.560	25.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

Table 30-8 Primary and Secondary Titanium Chip Crushing Wet Air Pollutant Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of titanium produced	
Chromium	10.090	4.126
Lead	9.627	4.584
Nickel	44.010	29.110
Titanium	21.550	9.398
Oil and grease	458.400	275.100
Total suspended solids	939.800	447.000
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

Table 30-9
Primary and Secondary Titanium
Acid Leachate and Rinse Water

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of titanium produced	
Chromium	5.210	2.131
Lead	4.973	2.368
Nickel	22.730	15.040
Titanium	11.130	4.854
Oil and grease	236.800	142.100
Total suspended solids	485.400	230.900
pH .	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times

Table 30-10
Primary and Secondary Titanium
Sponge Crushing and Screening Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of titanium produced	
Chromium	2.847	1.165
Lead	2.717	1.294
Nickel	12.420	8.217
Titanium	6.082	2.653
Oil and grease	129.400	77.640
Total suspended solids	265.300	126.200
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-11 Primary and Secondary Titanium Acid Pickle and Wash Water

Tiera Frence and Wash Water		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of titaniu	ım pickled
Chromium	0.027	0.011
Lead	0.026	0.012
Nickel	0.117	0.077
Titanium	0.057	0.025
Oil and grease	1.220	0.732
Total suspended solids	2.501	1.190
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-12 Primary and Secondary Titanium Scrap Milling Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of titanium milled	
Chromium	0.995	0.407
Lead	0.950	0.452
Nickel	4.341	2.871
Titanium	2.125	0.927
Oil and grease	45.220	27.130
Total suspended solids	92.700	44.090
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-13 Primary and Secondary Titanium Scrap Detergent Wash Water

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of scrap washed	
Chromium	7.948	3.252
Lead	7.587	3.613
Nickel	34.680	22.940
Titanium	16.980	7.406
Oil and grease	361.300	216.800
Total suspended solids	740.600	352.300
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-14 Primary and Secondary Titanium Casting Crucible Wash Water

Custing Crucicit Wash Water			
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of titanium cast		
Chromium	0.210	0.086	
Lead	0.200	0.095	
Nickel	0.916	0.606	
Titanium	0.448	0.196	
Oil and grease	9.540	5.724	
Total suspended solids	19.560	9.302	
nН	(1)	(1)	

pH
(1) Within the range of 7.5 to 10.0 at all times.

Table 30-15 Primary and Secondary Titanium Casting Contact Cooling Water

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
Pollutant or pollutant		per million pounds)	
property	of titanium cast		
Chromium	321.100	131.400	
Lead	306.500	145.900	
Nickel	1,401.000	926.800	
Titanium	685.900	299.200	
Oil and grease	14,590.000	8,757.000	
Total suspended solids	29,920.000	14,230.000	
pН	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.303 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 30-16
Primary and Secondary Titanium
Chlorination Off-gas Wet Air Pollution Control

emormation off gas wet in Fondtion control			
BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
Pollutant or pollu-	nt or pollu- mg/kg (pounds per million pounds) of ti-		
tant property	tanium tetrachloride produced		
Chromium	0.346	0.140	
Lead	0.262	0.122	
Nickel	0.515	0.346	
Titanium	0.496	0.216	

Table 30-17
Primary and Secondary Titanium
Chlorination Area-vent Wet Air Pollution Control

Chlorination Area-vent wet Air Pollution Control		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of ti-	
tant property	tanium tetrachloride produced	
Chromium	0.385	0.156
Lead	0.291	0.135
Nickel	0.572	0.385
Titanium	0.551	0.239

Table 30-18
Primary and Secondary Titanium
Titanium Tetrachloride Handling Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per m	illion pounds) of ti-
tant property	tanium tetrachloride handled	
Chromium	0.069	0.028
Lead	0.052	0.024
Nickel	0.103	0.069
Titanium	0.099	0.043
•		

Table 30-19 Primary and Secondary Titanium Reduction Area Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of ti-	
tant property	tanium produced	
Chromium	1.528	0.620
Lead	1.156	0.537
Nickel	2.272	1.528
Titanium	2.189	0.950

Table 30-20 Primary and Secondary Titanium Melt Cell Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per m	nillion pounds) of ti-
tant property	tanium produced	
Chromium	0.787	0.319
Lead	0.595	0.276
Nickel	1.169	0.787
Titanium	1.127	0.489

Table 30-21
Primary and Secondary Titanium
Chlorine Liquefaction Wet Air Pollution Control

	APP FOCOL TO THE STATE OF		
BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per million pounds) of ti-		
tant property	tanium produced		
Chromium	11.010	4.463	
Lead	8.332	3.868	
Nickel	16.370	11.010	
Titanium	15.770	6.844	

Table 30-22
Primary and Secondary Titanium
Sodium Reduction Container Reconditioning Wash Water

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	titanium produced	
Chromium	0.474	0.192
Lead	0.359	0.167
Nickel	0.705	0.474
Titanium	0.679	0.295

Table 30-23 Primary and Secondary Titanium Chip Crushing Wet Air Pollutant Control

Chip Crushing Wet 7th Tohutant Control		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of ti-	
tant property	tanium produced	
Chromium	0.848	0.344
Lead	0.642	0.298
Nickel	1.261	0.848
Titanium	1.215	0.527

Table 30-24 Primary and Secondary Titanium Acid Leachate and Rinse Water

Tiera Beachate and Tanise Water			
BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per m	illion pounds) of ti-	
tant property	tanium produced		
Chromium	4.381	1.776	
Lead	3.315	1.539	
Nickel	6.512	4.381	
Titanium	6.275	2.723	

Table 30-25
Primary and Secondary Titanium
Sponge Crushing and Screening Wet Air Pollution Control

BAT Effluent Limitations		
Maximum for any 1 Maximum fo		Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per m	illion pounds) of ti-
tant property	tanium produced	
Chromium	0.239	0.097
Lead	0.181	0.084
Nickel	0.356	0.239
Titanium	0.343	0.149

Table 30-26 Primary and Secondary Titanium Acid Pickle and Wash Water

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per m	nillion pounds) of ti-
tant property	tanium pickled	
Chromium	0.023	0.009
Lead	0.017	0.008
Nickel	0.034	0.023
Titanium	0.032	0.014

Table 30-27 Primary and Secondary Titanium Scrap Milling Wet Air Pollution Control

1 &			
BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
Pollutant or pollu-	pollu- mg/kg (pounds per million pounds) of ti-		
tant property	tanium milled		
Chromium	0.084	0.034	
Lead	0.064	0.030	
Nickel	0.125	0.084	
Titanium	0.120	0.052	

Table 30-28 Primary and Secondary Titanium Scrap Detergent Wash Water

BAT Effluent Limitations		
Maximum for any 1 Maximum f		Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	scrap washed	
Chromium	6.684	2.710
Lead	5.058	2.348
Nickel	9.935	6.684
Titanium	9.574	4.155

Table 30-29 Primary and Secondary Titanium Casting Crucible Wash Water

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of ti-	
tant property	tanium cast	
Chromium	0.176	0.072
Lead	0.134	0.062
Nickel	0.262	0.176
Titanium	0.253	0.110

Table 30-30 Primary and Secondary Titanium Casting Contact Cooling Water

BAT Effluent Limitations		
	Maximum for any 1 Maximum for	
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of ti-	
tant property	tanium cast	
Chromium	27.000	10.950
Lead	20.430	9.486
Nickel	40.140	27.000
Titanium	38.680	16.780

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.304 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 30-31 Primary and Secondary Titanium Chlorination Off-gas Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of titanium tetra	chloride produced
Chromium	0.346	0.140
Lead	0.262	0.122
Nickel	0.515	0.346
Titanium	0.496	0.215
Oil and grease	9.360	9.360
Total suspended solids	14.040	11.230
pH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 30-32
Primary and Secondary Titanium
Chlorination Area-vent Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	per million pounds)
property	of titanium tetrachloride produced	
Chromium	0.385	0.156
Lead	0.291	0.135
Nickel	0.572	0.385
Titanium	0.551	0.239
Oil and grease	10.400	10.400
Total suspended solids	15.600	12.480
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-33
Primary and Secondary Titanium
Titanium Tetrachloride Handling Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of titanium tetrachloride handled	
Chromium	0.069	0.028
Lead	0.052	0.024
Nickel	0.103	0.069
Titanium	0.099	0.043
Oil and grease	1.870	1.870
Total suspended solids	2.805	2.244
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-34
Primary and Secondary Titanium
Reduction Area Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of titanium produced	
Chromium	1.528	0.620
Lead	1.156	0.537
Nickel	2.272	1.528
Titanium	2.198	0.950
Oil and grease	41.300	41.600
Total suspended solids	61.950	49.560
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-35 Primary and Secondary Titanium Melt Cell Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of titanium produced	
Chromium	0.787	0.319
Lead	0.595	0.276
Nickel	1.169	0.276
Titanium	1.127	0.489
Oil and grease	21.260	21.260
Total suspended solids	31.890	25.510
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-36
Primary and Secondary Titanium
Chlorine Liquefaction Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of titanium produced	
Chromium	0.000	0.000
Lead	0.000	0.000
Nickel	0.000	0.000
Titanium	0.000	0.000
Oil and grease	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-37
Primary and Secondary Titanium
Sodium Reduction Container Reconditioning Wash Water

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	per million pounds)
property	of titanium produced	
Chromium	0.474	0.192
Lead	0.359	0.167
Nickel	0.705	0.474
Titanium	0.679	0.295
Oil and grease	12.820	12.820
Total suspended solids	19.230	15.380
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-38 Primary and Secondary Titanium Chip Crushing Wet Air Pollutant Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of titanium produced	
Chromium	0.000	0.000
Lead	0.000	0.000
Nickel	0.000	0.000
Titanium	0.000	0.000
Oil and grease	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-39 Primary and Secondary Titanium Acid Leachate and Rinse Water

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	per million pounds)
property	of titanium produced	
Chromium	4.381	1.776
Lead	3.351	1.539
Nickel	6.512	4.381
Titanium	6.275	2.723
Oil and grease	118.400	118.400
Total suspended solids	177.600	142.100
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-40
Primary and Secondary Titanium
Sponge Crushing and Screening Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of titanium produced	
Chromium	0.000	0.000
Lead	0.000	0.000
Nickel	0.000	0.000
Titanium	0.000	0.000
Oil and grease	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-41 Primary and Secondary Titanium Acid Pickle and Wash Water

	NSPS	
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per m	nillion pounds) of ti-
tant property	tanium	
Chromium	0.023	0.009
Lead	0.017	0.008
Nickel	0.034	0.023
Titanium	0.032	0.014
Oil and grease	0.610	0.610
Total suspended	0.915	0.732
solids		
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-42 Primary and Secondary Titanium Scrap Milling Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of titani	um milled
Chromium	0.000	0.000
Lead	0.000	0.000
Nickel	0.000	0.000
Titanium	0.000	0.000
Oil and grease	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-43 Primary and Secondary Titanium Scrap Detergent Wash Water

Serup Detergent Wash Water		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of scrap washed	
Chromium	6.684	2.710
Lead	5.058	2.348
Nickel	9.935	6.684
Titanium	9.574	4.155
Oil and grease	180.600	180.600
Total suspended solids	271.000	216.000
pН	(1)	(1)

Table 30-44
Primary and Secondary Titanium
Casting Crucible Wash Water

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of titanium cast	
Chromium	0.176	0.072
Lead	0.134	0.062
Nickel	0.262	0.176
Titanium	0.253	0.110
Oil and grease	4.770	4.770
Total suspended solids	7.155	5.724
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 30-45
Primary and Secondary Titanium
Casting Contact Cooling Water

custing contact cooling water		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of titanium cast	
Chromium	27.000	10.950
Lead	20.430	9.486
Nickel	40.140	27.000
Titanium	38.680	16.780
Oil and grease	729.700	729.700
Total suspended solids	1,095.000	875.700
pН	(1)	(1)
(1) Within the sense of 7.5 to 10	O at all times	<u> </u>

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.305 Pretreatment standards for existing sources. Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.303.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.306 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.303.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XXXI — Secondary Tungsten and Cobalt

NR 274.31 Applicability; description of the secondary tungsten and cobalt subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of tungsten or cobalt at secondary tungsten and cobalt facilities which process tungsten or tungsten carbide scrap raw materials.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.312 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

(1) Within the range of 7.5 to 10.0 at all times.

Table 31-1 Secondary Tungsten and Cobalt Tungsten Detergent Wash and Rinse

Tungoten 2	etergent masn and	111100
BPT I	Effluent Limitation	S
Maximum for Maximum for		
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds per million pounds)	
property	of tungsten scrap washed	
Copper	0.371	0.195
Nickel	0.374	0.248
Ammonia (as N)	25.990	11.430
Cobalt	0.768	0.337
Tungsten	1.357	0.542
Oil and grease	3.900	2.340
Total suspended solids	7.995	3.803
н	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-2 Secondary Tungsten and Cobalt Tungsten Leaching Acid

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tungsten produced	
Copper	4.885	2.571
Nickel	4.937	3.365
Ammonia (as N)	342.700	150.700
Cobalt	10.130	4.448
Tungsten	17.890	7.147
Oil and grease	51.420	30.850
Total suspended solids	105.400	50.140
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-3 Secondary Tungsten and Cobalt Tungsten Post Leaching Wash and Rinse

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tungsten produced	
Copper	9.772	5.143
Nickel	9.875	6.532
Ammonia (as N)	685.600	301.400
Cobalt	20.263	8.897
Tungsten	35.800	14.300
Oil and grease	102.900	61.720
Total suspended solids	210.900	100.300
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-4 Secondary Tungsten and Cobalt Synthetic Scheelite Filtrate

BPT Effluent Limitations			
Maximum for Maximum for			
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of synthetic scheelite produced		
Copper	31.660	16.660	
Nickel	31.990	21.160	
Ammonia (as N)	2,221.000	976.300	
Cobalt	65.644	28.824	
Tungsten	116.000	46.320	
Oil and grease	333.200	200.000	
Total suspended solids	683.000	324.900	
рН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-5 Secondary Tungsten and Cobalt Tungsten Carbide Leaching Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tungsten carbide scrap leached	
Copper	3.327	1.751
Nickel	3.362	2.224
Ammonia (as N)	233.400	102.600
Cobalt	6.899	3.039
Tungsten	12.190	4.868
Oil and grease	35.020	21.010
Total suspended solids	71.790	34.150
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-6 Secondary Tungsten and Cobalt Tungsten Carbide Wash Water

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tungsten carbide produced	
Copper	15.830	8.333
Nickel	16.000	10.580
Ammonia (as N)	1,111.000	488.300
Cobalt	32.832	14.146
Tungsten	58.000	23.170
Oil and grease	166.700	100.000
Total suspended solids	341.700	162.500
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-7 Secondary Tungsten and Cobalt Cobalt Sludge Leaching Wet Air Pollution Control BPT Effluent Limitations

Di i Linucht Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	per million pounds)
Pollutant or pollutant	of cobalt prod	uced from cobalt
property	slı	udge
Copper	67.990	35.780
Nickel	68.700	45.440
Ammonia (as N)	4,770.000	2,097.000
Cobalt	140.977	61.901
Tungsten	249.000	99.470
Oil and grease	715.600	429.400
Total suspended solids	1,467.000	697.700
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-8 Secondary Tungsten and Cobalt Crystallization Decant

- 5		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of cobalt produced	
Copper	79.140	41.650
Nickel	79.970	52.900
Ammonia (as N)	5,552.000	2,441.000
Cobalt	164.101	72.055
Tungsten	289.900	115.800
Oil and grease	833.000	499.800
Total suspended solids	1,708.000	812.200
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-9 Secondary Tungsten and Cobalt Acid Wash Decant

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of cobalt produced	
Copper	36.220	19.060
Nickel	36.600	24.210
Ammonia (as N)	2,541.000	1,117.000
Cobalt	75.104	32.977
Tungsten	132.700	52.990
Oil and grease	381.300	228.800
Total suspended solids	781.600	371.700
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-10 Secondary Tungsten and Cobalt Cobalt Hydroxide Filtrate

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of cobalt produced	
Copper	107.600	56.650
Nickel	108.800	71.940
Ammonia (as N)	7,551.000	3,320.000
Cobalt	223.189	97.999
Tungsten	394.300	157.500
Oil and grease	1,133.000	679.800
Total suspended solids	2,323.000	1,105.000
pН	(1)	(1)
(1) Within the range of 7.5 to 10.0 at all times.		

Table 31-11 Secondary Tungsten and Cobalt Cobalt Hydroxide Filter Cake Wash

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of cobalt produced	
Copper	207.200	109.100
Nickel	209.400	138.500
Ammonia (as N)	14,530.000	6,389.000
Cobalt	429.598	188.631
Tungsten	758.900	303.100
Oil and grease	2,181.000	1,309.000
Total suspended solids	4,471.000	2,126.000
pH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times. **History:** Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.313 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 31-12 Secondary Tungsten and Cobalt Tungsten Detergent Wash and Rinse

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-	Pollutant or pollumg/kg (pounds per million pounds) of	
tant property	tungsten scrap washed	
Copper	0.250	0.119
Nickel	0.107	0.072
Ammonia (as N)	25.990	11.430
Cobalt	0.538	0.236
Tungsten	0.679	0.302

Table 31-13 Secondary Tungsten and Cobalt Tungsten Leaching Acid

rungsten Leaening Acid			
BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
Pollutant or pollu-	Pollutant or pollumg/kg (pounds per million pounds) of		
tant property	tungsten produced		
Copper	3.291	1.569	
Nickel	1.414	0.951	
Ammonia (as N)	342.700	150.700	
Cobalt	7.096	3.111	
Tungsten	8.947	3.985	

Table 31-14 Secondary Tungsten and Cobalt Tungsten Post Leaching Wash and Rinse

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	tungsten produced	
Copper	6.583	3.137
Nickel	2.829	1.903
Ammonia (as N)	685.600	301.400
Cobalt	14.194	6.223
Tungsten	17.900	7.972

Table 31-15 Secondary Tungsten and Cobalt Synthetic Scheelite Filtrate

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	synthetic scheelite produced	
Copper	21.330	10.170
Nickel	9.164	6.165
Ammonia (as N)	2,221.000	976.300
Cobalt	45.984	20.160
Tungsten	57.980	25.820

Table 31-16 Secondary Tungsten and Cobalt Tungsten Carbide Leaching Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1 Maximum for	
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	tungsten carbide scrap leached	
Copper	2.241	1.068
Nickel	0.963	0.648
Ammonia (as N)	233.400	102.600
Cobalt	4.833	2.119
Tungsten	6.093	2.714

Table 31-17 Secondary Tungsten and Cobalt Tungsten Carbide Wash Water

Tuligstell Carbide wash water			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day monthly average		
Pollutant or pollumg/kg (pounds per million pounds) of			
tant property	tungsten carbide produced		
Copper	10.670	5.083	
Nickel	4.583	3.083	
Ammonia (as N)	1,111.000	488.300	
Cobalt	22.999	10.083	
Tungsten	29.000	12.920	

Table 31-18 Secondary Tungsten and Cobalt Cobalt Sludge Leaching Wet Air Pollution Control

BAT Effluent Limitations		
Maximum for any 1 Maximum for		Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	cobalt produced from cobalt sludge	
Copper	45.800	21.830
Nickel	19.680	13.240
Ammonia (as N)	4,770.000	2,097.000
Cobalt	98.756	43.295
Tungsten	124.500	55.460

Table 31-19 Secondary Tungsten and Cobalt Crystallization Decant

BAT Effluent Limitations		
Maximum for any 1 Maximum fo		Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	cobalt produced	
Copper	53.310	25.410
Nickel	22.910	15.410
Ammonia (as N)	5,552.000	2,441.000
Cobalt	114.954	50.397
Tungsten	144.900	64.560

Table 31-20 Secondary Tungsten and Cobalt Acid Wash Decant

BAT Effluent Limitations			
Maximum for any 1 Maximum for		Maximum for	
	day	monthly average	
Pollutant or pollu-	mg/kg (pounds per million pounds) of		
tant property	cobalt produced		
Copper	24.400	11.630	
Nickel	10.490	7.053	
Ammonia (as N)	2,541.000	1,117.000	
Cobalt	52.611	23.065	
Tungsten	66.340	29.550	

Table 31-21 Secondary Tungsten and Cobalt Cobalt Hydroxide Filtrate

BAT Effluent Limitations		
Maximum for any 1 Maximum fo		Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	cobalt produced	
Copper	72.510	34.560
Nickel	31.160	20.960
Ammonia (as N)	7,551.000	3,320.000
Cobalt	156.346	68.543
Tungsten	197.100	87.800

Table 31-22 Secondary Tungsten and Cobalt Cobalt Hydroxide Filter Cake Wash

Cobait Hydroxide I fiter Cake Wash			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
Pollutant or pollu-	t or pollu- mg/kg (pounds per million pounds) of		
tant property	cobalt produced		
Copper	139.600	66.510	
Nickel	59.970	40.340	
Ammonia (as N)	14,530.000	6,389.000	
Cobalt	300.094	131.094	
Tungsten	379.400	169.000	

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.314 New source performance standards. Any new source subject to this subchapter shall achieve the following standards:

Table 31-23 Secondary Tungsten and Cobalt Tungsten Detergent Wash and Rinse

Tangsten Betergent wash and Tange		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tungsten	scrap washed
Copper	0.250	0.119
Nickel	0.107	0.072
Ammonia (as N)	25.990	11.430
Cobalt	0.538	0.236
Tungsten	0.679	0.302
Oil and grease	1.950	1.950
Total suspended solids	2.925	2.340
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-24 Secondary Tungsten and Cobalt Tungsten Leaching Acid

	oten Beatining i iera	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tungste	n produced
Copper	3.291	1.569
Nickel	1.414	0.951
Ammonia (as N)	342.700	150.700
Cobalt	7.096	3.111
Tungsten	8.947	3.985
Oil and grease	25.710	25.710
Total suspended solids	38.570	30.850
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-25 Secondary Tungsten and Cobalt Tungsten Post Leaching Wash and Rinse

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tungste	n produced
Copper	6.583	3.137
Nickel	2.829	1.903
Ammonia (as N)	685.600	301.400
Cobalt	14.194	6.223
Tungsten	17.900	7.972
Oil and grease	51.430	51.430
Total suspended solids	77.150	61.720
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-26 Secondary Tungsten and Cobalt Synthetic Scheelite Filtrate

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of synthetic sc	heelite produced
Copper	21.330	10.170
Nickel	9.164	6.165
Ammonia (as N)	2,221.000	976.300
Cobalt	45.984	20.160
Tungsten	57.980	25.820
Oil and grease	166.600	166.600
Total suspended solids	249.900	199.900
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-27 Secondary Tungsten and Cobalt Tungsten Carbide Leaching Wet Air Pollution Control

	NCDC	
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of tungsten carb	ide scrap leached
Copper	2.241	1.068
Nickel	0.963	0.648
Ammonia (as N)	233.400	102.600
Cobalt	4.833	2.119
Tungsten	6.093	2.714
Oil and grease	17.510	17.510
Total suspended solids	26.270	21.010
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-28 Secondary Tungsten and Cobalt Tungsten Carbide Wash Water

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of tungsten ca	rbide produced
Copper	10.670	5.083
Nickel	4.583	3.083
Ammonia (as N)	1,111.000	488.300
Cobalt	22.999	10.083
Tungsten	29.000	12.920
Oil and grease	83.330	83.330
Total suspended solids	125.000	100.349
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-29
Secondary Tungsten and Cobalt
Cobalt Sludge Leaching Wet Air Pollution Control

Coourt Brange Ecacining Wet 7th Tenation Control		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
		er million pounds)
Pollutant or pollutant	of cobalt prod	uced from cobalt
property	sludge	
Copper	45.800	21.830
Nickel	19.680	13.240
Ammonia (as N)	4,770.000	2,097.000
Cobalt	98.756	43.295
Tungsten	124.500	55.460
Oil and grease	357.800	357.800
Total suspended solids	536.700	429.400
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-30 Secondary Tungsten and Cobalt Crystallization Decant

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of cobalt produced	
Copper	53.310	25.410
Nickel	22.910	15.410
Ammonia (as N)	5,552.000	2,441.000
Cobalt	114.954	50.397
Tungsten	144.900	64.560
Oil and grease	416.500	416.500
Total suspended solids	624.800	499.800
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-31 Secondary Tungsten and Cobalt Acid Wash Decant

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of cobal	t produced
Copper	24.400	11.630
Nickel	10.490	7.053
Ammonia (as N)	2,541.000	1,117.000
Cobalt	52.611	23.065
Tungsten	66.340	29.550
Oil and grease	190.600	190.600
Total suspended solids	285.900	228.700
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-32 Secondary Tungsten and Cobalt Cobalt Hydroxide Filtrate

	t 11) di omide i midd	<u>-</u>
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of cobal	t produced
Copper	72.510	34.560
Nickel	31.160	20.960
Ammonia (as N)	7,551.000	3,320.000
Cobalt	156.346	68.543
Tungsten	197.100	87.800
Oil and grease	566.500	566.500
Total suspended solids	849.700	679.800
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 31-33 Secondary Tungsten and Cobalt Cobalt Hydroxide Filter Cake Wash

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of cobalt produced	
Copper	139.600	66.510
Nickel	59.970	40.340
Ammonia (as N)	14,530.000	6,389.000
Cobalt	300.094	131.932
Tungsten	379.400	169.000
Oil and grease	1,090.000	1,090.000
Total suspended solids	1,636.000	1,308.000
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.315 Pretreatment standards for existing sources. Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.313.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.316 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.313.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XXXII — Secondary Uranium

NR 274.32 Applicability; description of the secondary uranium subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of uranium, including depleted uranium, by secondary uranium facilities.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.322 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 32-1 Secondary Uranium Refinery Sump Filtrate

Kermery Sump Finate			
BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of uranium processed in the refinery		
Chromium	32.270	13.200	
Copper	139.300	73.340	
Nickel	140.800	93.140	
Fluoride	2,567.000	1,459.000	
Total suspended solids	3,007.000	1,430.000	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 32-2 Secondary Uranium Slag Leach Reslurry

BPT Effluent Limitations			
Maximum for Maximum for			
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of uranium proce	ssed in the refinery	
Chromium	2.009	0.822	
Copper	8.675	4.566	
Nickel	8.767	5.799	
Fluoride	159.800	90.860	
Total suspended solids	187.200	89.040	
pH .	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 32-3 Secondary Uranium Solvent Extraction Raffinate Filtrate

BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of uranium processed in the refinery		
Chromium	2.802	1.146	
Copper	12.100	6.369	
Nickel	12.230	8.089	
Fluoride	222.900	126.700	
Total suspended solids	261.100	124.200	
pН	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times.

Table 32-4 Secondary Uranium Digestion Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant		er million pounds)	
property	of uranium proce	ssed in the refinery	
Chromium	0.000	0.000	
Copper	0.000	0.000	
Nickel	0.000	0.000	
Fluoride	0.000	0.000	
Total suspended solids	0.000	0.000	
pH	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times.

Table 32-5 Secondary Uranium Evaporation and Denitration Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for Maximum for		
	any 1 day	monthly average	
Pollutant or pollutant	mg/kg (pounds p	er million pounds)	
property	of uranium trioxide produced		
Chromium	0.000	0.000	
Copper	0.000	0.000	
Nickel	0.000	0.000	
Fluoride	0.000	0.000	
Total suspended solids	0.000	0.000	
pН	(1)	(1)	

(1) Within the range of 7.5 to 10.0 at all times.

Table 32-6 Secondary Uranium Hypofluorination Alkaline Scrubber

V1		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of uranium tetrafluoride produced	
Chromium	0.009	0.004
Copper	0.038	0.020
Nickel	0.038	0.025
Fluoride	0.070	0.398
Total suspended solids	0.820	0.390
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

DEPARTMENT OF NATURAL RESOURCES

Table 32-7 Secondary Uranium Hypofluorination Water Scrubber

, F		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of uranium tetra	fluoride produced
Chromium	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000
Fluoride	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 32-8 Secondary Uranium Magnesium Reduction and Casting Floor Wash

8		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of uranium produ	ced by magnesium
property	reduction	
Chromium	0.013	0.005
Copper	0.057	0.030
Nickel	0.058	0.038
Fluoride	1.056	0.599
Total suspended solids	1.234	0.587
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 32-9 Secondary Uranium Laundry Wastewater

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of uranium produ	iced by magnesium
property	reduction	
Chromium	0.084	0.035
Copper	0.365	0.192
Nickel	0.369	0.244
Fluoride	6.720	3.821
Total suspended solids	7.872	3.744
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.323 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 32-10 Secondary Uranium Refinery Sump Filtrate

BAT Efficient Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	
tant property	uranium processe	d in the refinery
Chromium	27.14	11.00
Copper	93.88	44.74
Nickel	40.34	27.14
Fluoride	2,567.00	1,459.00

Table 32-11 Secondary Uranium Slag Leach Reslurry

~6		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
Pollutant or pollu-		
tant property	uranium processed in the refinery	
Chromium	1.689	0.685
Copper	5.844	2.785
Nickel	2.511	1.689
Fluoride	159.800	90.860

Table 32-12 Secondary Uranium Solvent Extraction Raffinate Filtrate

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	uranium processed in the refinery	
Chromium	2.357	0.955
Copper	8.152	3.885
Nickel	3.503	2.357
Fluoride	222.900	126.700

Table 32-13 Secondary Uranium Digestion Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	uranium processed in the refinery	
Chromium	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000
Fluoride	0.000	0.000

Table 32-14
Secondary Uranium
Evaporation and Denitration Wet Air Pollution Control
BAT Effluent Limitations

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per	million pounds) of
tant property	uranium trioxide produced	
Chromium	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000
Fluoride	0.000	0.000

96

Table 32-15 Secondary Uranium Hypofluorination Alkaline Scrubber

Hyportuorination Alkanne Scrubber		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		
day	monthly average	
Pollutant or pollumg/kg (pounds per million pounds) of		
uranium tetrafluoride produced		
0.007	0.003	
0.026	0.012	
0.011	0.025	
0.700	0.398	
	AT Effluent Limitation Maximum for any 1 day mg/kg (pounds per uranium tetraflu 0.007 0.026 0.011	

Table 32-16 Secondary Uranium Hypofluorination Water Scrubber

Tryportacrimation water seraccer		
BAT Effluent Limitations		
Maximum for any 1 Maximum for		Maximum for
	day	monthly average
Pollutant or pollu-	mg/kg (pounds per million pounds) of	
tant property	uranium tetrafluoride produced	
Chromium	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000
Fluoride	0.000	0.000
Chromium Copper Nickel	0.000 0.000 0.000	0.000 0.000 0.000

Table 32-17 Secondary Uranium Magnesium Reduction and Casting Floor Wash

Magnesium Reduction and Casting Ploof Wash		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per	million pounds) of
Pollutant or pollu-	uranium produce	d by magnesium
tant property	reduction	
Chromium	0.011	0.005
Copper	0.039	0.018
Nickel	0.017	0.011
Fluoride	1.054	0.599

Table 32-18 Secondary Uranium Laundry Wastewater

Edulary Wastewater		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
mg/kg (pounds per million pounds) of		
Pollutant or pollu-	uranium produce	d by magnesium
tant property	reduction	
Chromium	0.036	0.014
Copper	0.123	0.059
Nickel	0.053	0.036
Fluoride	3.360	1.910

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91

NR 274.324 New source performance standards.

Any new source subject to this subchapter shall achieve the following standards:

Table 32-19 Secondary Uranium Refinery Sump Filtrate

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of uranium proce	ssed in the refinery
Chromium	27.14	11.00
Copper	93.88	44.74
Nickel	40.34	27.14
Fluoride	2,567.00	1,459.00
Total suspended solids	1,100.00	880.10
pН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 32-20 Secondary Uranium Slag Leach Reslurry

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of uranium proce	ssed in the refinery
Chromium	1.689	0.685
Copper	5.844	2.785
Nickel	2.511	1.689
Fluoride	159.800	90.860
Total suspended solids	68.490	54.790
рН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 32-21 Secondary Uranium Solvent Extraction Raffinate Filtrate

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of uranium proce	essed in the refinery
Chromium	2.357	0.955
Copper	8.152	3.885
Nickel	3.503	2.357
Fluoride	222.900	126.700
Total suspended solids	95.540	76.430
pH	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 32-22 Secondary Uranium Digestion Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of uranium processed in the refinery	
Chromium	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000
Fluoride	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times.

Table 32-23 Secondary Uranium Evaporation and Denitration Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of uranium tri	oxide produced
Chromium	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000
Fluoride	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 32-24 Secondary Uranium Hypofluorination Alkaline Scrubber

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant		er million pounds)
property	of uranium tetra	fluoride produced
Chromium	0.007	0.003
Copper	0.026	0.012
Nickel	0.011	0.025
Fluoride	0.700	0.398
Total suspended solids	0.300	0.240
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 32-25 Secondary Uranium Hypofluorination Water Scrubber

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of uranium tetra	fluoride produced
Chromium	0.000	0.000
Copper	0.000	0.000
Nickel	0.000	0.000
Fluoride	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)
(1) W/:41:1. 41	0 -4 -11 4:	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 32-26 Secondary Uranium Magnesium Reduction and Casting Floor Wash

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
		er million pounds)
Pollutant or pollutant	of uranium produ	ced by magnesium
property	reduction	
Chromium	0.011	0.005
Copper	0.039	0.018
Nickel	0.017	0.011
Fluoride	1.054	0.599
Total suspended solids	0.452	0.361
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 32-27 Secondary Uranium Laundry Wastewater

	NSPS		
	Maximum for	Maximum for	
	any 1 day	monthly average	
	mg/kg (pounds per million pounds)		
Pollutant or pollutant	of uranium produ	iced by magnesium	
property	reduction		
Chromium	0.036	0.014	
Copper	0.123	0.059	
Nickel	0.053	0.036	
Fluoride	3.360	1.910	
Total suspended solids	1.440	1.152	
pН	(1)	(1)	
Fluoride Total suspended solids	3.360 1.440 (1)	1.910	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.326 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.323.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Subchapter XXXIII — Primary Zirconium and Hafnium

NR 274.33 Applicability; description of the primary zirconium and hafnium subcategory. This subchapter applies to the discharge of pollutants to waters of the state and the introduction of pollutants into POTWs from the production of zirconium or hafnium at primary zirconium and hafnium facilities except for facilities which only produce zirconium or zirconium/nickel alloys by magnesium reduction of zirconium dioxide.

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.332 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BPT:

Table 33-1 Primary Zirconium and Hafnium Sand Drying Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
		er million pounds)
Pollutant or pollutant	of zirconium die	xide and hafnium
property	dioxide produced	
Chromium	0.250	0.102
Cyanide	0.165	0.068
Lead	0.239	0.114
Nickel	1.091	0.721
Ammonia (as N)	75.710	33.280
Total suspended solids	23.290	11.080
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-2 Primary Zirconium and Hafnium Sand Chlorination Off-Gas Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
mg/kg (pounds per million pounds)			
Pollutant or pollutant	of zirconium die	oxide and hafnium	
property	dioxide produced		
Chromium	19.130	7.825	
Cyanide	12.610	5.216	
Lead	18.260	8.694	
Nickel	83.460	55.210	
Ammonia (as N)	5,795.000	2,547.000	
Total suspended solids	1,782.000	847.700	
pH	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-3
Primary Zirconium and Hafnium
Sand Chlorination Area-Vent Wet Air Pollution Control

BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
	mg/kg (pounds p	er million pounds)	
Pollutant or pollutant	of zirconium die	oxide and hafnium	
property	dioxide produced		
Chromium	3.751	1.534	
Cyanide	2.472	1.023	
Lead	3.580	1.705	
Nickel	16.370	10.830	
Ammonia (as N)	1,136.000	449.500	
Total suspended solids	349.500	166.200	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-4
Primary Zirconium and Hafnium
Silicon Tetrachloride Purification Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
		er million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide	produced
Chromium	3.299	1.350
Cyanide	2.174	0.900
Lead	3.149	1.500
Nickel	14.400	9.522
Ammonia (as N)	999.500	439.400
Total suspended solids	307.400	146.200
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-5 Primary Zirconium and Hafnium Feed Make Up Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	per million pounds)
Pollutant or pollutant	of zirconium di	oxide and hafnium
property	dioxide	produced
Chromium	2.501	1.023
Cyanide	1.648	0.682
Lead	2.387	1.137
Nickel	10.910	7.217
Ammonia (as N)	757.500	333.000
Total suspended solids	233.000	110.800
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-6
Primary Zirconium and Hafnium
Iron Extraction Steam Stripper Bottoms

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide	produced
Chromium	0.987	0.404
Cyanide	0.651	0.269
Lead	0.942	0.449
Nickel	4.308	2.850
Ammonia (as N)	299.100	131.500
Total suspended solids	92.000	43.760
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-7 Primary Zirconium and Hafnium Zirconium Filtrate

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
		per million pounds)
Pollutant or pollutant	of zirconium di	oxide and hafnium
property	dioxide produced	
Chromium	17.070	6.982
Cyanide	11.250	4.655
Lead	16.290	7.758
Nickel	74.480	49.260
Ammonia (as N)	5,171.000	2,273.000
Total suspended solids	1,590.000	756.400
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-8 Primary Zirconium and Hafnium Hafnium Filtrate

Trannum Phrace		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide produced	
Chromium	0.000	0.000
Cyanide	0.000	0.000
Lead	0.000	0.000
Nickel	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-9 Primary Zirconium and Hafnium Calcining Caustic Wet Air Pollution Control

8		
BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	per million pounds)
Pollutant or pollutant	of zirconium di	oxide and hafnium
property	dioxide produced	
Chromium	3.959	1.619
Cyanide	2.609	1.080
Lead	3.799	1.799
Nickel	17.270	11.430
Ammonia (as N)	1,199.000	527.200
Total suspended solids	368.900	175.400
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-10 Primary Zirconium and Hafnium Pure Chlorination Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide	produced
Chromium	16.860	6.897
Cyanide	11.110	4.598
Lead	16.090	7.663
Nickel	73.570	48.660
Ammonia (as N)	5,108.000	2,245.000
Total suspended solids	1,571.000	747.200
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-11 Primary Zirconium and Hafnium Reduction Area Vent Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
		per million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide produced	
Chromium	1.622	0.663
Cyanide	1.069	0.442
Lead	1.548	0.737
Nickel	7.077	4.681
Ammonia (as N)	491.300	216.000
Total suspended solids	151.100	71.880
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-12 Primary Zirconium and Hafnium Magnesium Recovery Off-Gas Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
		per million pounds)
Pollutant or pollutant	of zirconium di	oxide and hafnium
property	dioxide produced	
Chromium	9.123	3.732
Cyanide	6.013	2.488
Lead	8.708	4.147
Nickel	39.810	26.330
Ammonia (as N)	2,764.000	1,215.000
Total suspended solids	850.100	404.300
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-13 Primary Zirconium and Hafnium Magnesium Recovery Area-Vent Wet Air Pollution Control

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
property	of zirconium die	oxide and hafnium
	dioxide	produced
Chromium	5.068	2.073
Cyanide	3.340	1.382
Lead	4.838	2.304
Nickel	22.110	14.630
Ammonia (as N)	1,535.000	675.000
Total suspended solids	472.200	224.600
рН	(1)	(1)
(1) Within the range of 7.5 to 10.	0 at all times	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-14
Primary Zirconium and Hafnium
Zirconium Chip Crushing Wet Air Pollution Control

	F		
BPT Effluent Limitations			
	Maximum for	Maximum for	
	any 1 day	monthly average	
	mg/kg (pounds p	er million pounds)	
Pollutant or pollutant	of zirconium die	oxide and hafnium	
property	dioxide produced		
Chromium	0.000	0.000	
Cyanide	0.000	0.000	
Lead	0.000	0.000	
Nickel	0.000	0.000	
Ammonia (as N)	0.000	0.000	
Total suspended solids	0.000	0.000	
рН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-15
Primary Zirconium and Hafnium
Acid Leachate From Zirconium Metal Production

The Dead Market Trom England Transaction			
BPT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
	mg/kg (pounds per		
Pollutant or pollu-	zirconium dioxide a	nd hafnium dioxide	
tant property	prod	produced	
Chromium	12.970	5.304	
Cyanide	8.545	3.536	
Lead	12.380	5.893	
Nickel	56.570	37.420	
Ammonia (as N)	3,928.000	1,727.000	
Total suspended	,	,	
solids	1,208.000	574.600	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-16
Primary Zirconium and Hafnium
Acid Leachate From Zirconium Alloy Production

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	per million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide produced	
Chromium	6.939	2.839
Cyanide	4.574	1.893
Lead	6.624	3.154
Nickel	30.280	20.030
Ammonia (as N)	2,102.000	924.200
Total suspended solids	646.600	307.600
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-17
Primary Zirconium and Hafnium
Leaching Rinse Waters From Zirconium Metal Production

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
		per million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide	produced
Chromium	25.930	10.610
Cyanide	17.090	7.072
Lead	24.750	11.790
Nickel	113.200	74.840
Ammonia (as N)	7,856.000	3,453.000
Total suspended solids	2,416.000	1,149.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-18
Primary Zirconium and Hafnium
Leaching Rinse Waters From Zirconium Alloy Production

BPT Effluent Limitations		
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide	produced
Chromium	0.347	0.142
Cyanide	0.299	0.095
Lead	0.331	0.158
Nickel	1.515	1.002
Ammonia (as N)	105.200	46.240
Total suspended solids	32.350	15.390
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

NR 274.333 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. Except as provided in 40 CFR 125.30 to 125.32, any existing point source subject to this subchapter shall achieve the following effluent limitations representing the degree of effluent reduction attainable by application of BAT:

Table 33-19 Primary Zirconium and Hafnium Sand Drying Wet Air Pollution Control

D. T. D.C.		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
mg/kg (pounds per million pounds) of		
Pollutant or pollu-	zirconium dioxide and hafnium dioxide	
tant property	produced	
Chromium	0.210	0.085
Cyanide	0.114	0.045
Lead	0.159	0.074
Nickel	0.312	0.210
Ammonia (as N)	75.710	33.280

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

Table 33-20
Primary Zirconium and Hafnium
Sand Chlorination Off-Gas Wet Air Pollution Control

Sand Chiormation On-Gas wet 7th Tonation Control			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
	mg/kg (pounds per		
Pollutant or pollu-	zirconium dioxide and hafnium dioxide		
tant property	produced		
Chromium	16.080	6.521	
Cyanide	8.694	3.478	
Lead	12.170	5.651	
Nickel	23.910	16.080	
Ammonia (as N)	5,795.000	2,547.000	

Table 33-21
Primary Zirconium and Hafnium
Sand Chlorination Area-Vent Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per	million pounds) of
Pollutant or pollu-	zirconium dioxide and hafnium dioxide	
tant property	produced	
Chromium	3.154	1.279
Cyanide	1.705	0.682
Lead	2.387	1.108
Nickel	4.688	3.154
Ammonia (as N)	1,136.000	499.500

Table 33-22 Primary Zirconium and Hafnium Silicon Tetrachloride Purification Wet Air Pollution Control

BAT Effluent Limitations		
Maximum for any 1 Maximum for		
	day	monthly average
	mg/kg (pounds per	
Pollutant or pollu-	zirconium dioxide a	nd hafnium dioxide
tant property	produced	
Chromium	2.774	1.125
Cyanide	1.500	0.600
Lead	2.099	0.975
Nickel	4.124	2.774
Ammonia (as N)	999.500	439.400

Table 33-23 Primary Zirconium and Hafnium Feed Make Up Wet Air Pollution Control

rece make op wet in renation control			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
mg/kg (pounds per million pounds) of			
Pollutant or pollu-	zirconium dioxide and hafnium dioxide		
tant property	produced		
Chromium	2.103	0.852	
Cyanide	1.137	0.455	
Lead	1.591	0.739	
Nickel	3.126	2.103	
Ammonia (as N)	757.500	333.000	

Table 33-24 Primary Zirconium and Hafnium Iron Extraction Steam Stripper Bottoms

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per	million pounds) of
Pollutant or pollu-	zirconium dioxide and hafnium dioxide	
tant property	produced	
Chromium	0.830	0.337
Cyanide	0.449	0.180
Lead	0.628	0.292
Nickel	1.234	0.830
Ammonia (as N)	299.100	131.500

Table 33-25
Primary Zirconium and Hafnium
Zirconium Filtrate

Zireomum i mrate			
BAT Effluent Limitations			
Maximum for any 1 Maximum for			
	day	monthly average	
	mg/kg (pounds per	million pounds) of	
Pollutant or pollu-	zirconium dioxide and hafnium dioxide		
tant property	produced		
Chromium	14.350	5.819	
Cyanide	7.758	3.103	
Lead	10.860	5.043	
Nickel	21.330	14.350	
Ammonia (as N)	5,171.000	2,273.000	

Table 33-26 Primary Zirconium and Hafnium Hafnium Filtrate

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per	million pounds) of
Pollutant or pollu-	zirconium dioxide and hafnium dioxide	
tant property	produced	
Chromium	0.000	0.000
Cyanide	0.000	0.000
Lead	0.000	0.000
Nickel	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 33-27
Primary Zirconium and Hafnium
Calcining Caustic Wet Air Pollution Control

- · · · · · · · · · · · · · · · · · · ·			
BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
	mg/kg (pounds per	million pounds) of	
Pollutant or pollu-	zirconium dioxide and hafnium dioxide		
tant property	produced		
Chromium	3.329	1.350	
Cyanide	1.799	0.720	
Lead	2.519	1.170	
Nickel	14.948	3.329	
Ammonia (as N)	1.199.000	527.200	

Table 33-28
Primary Zirconium and Hafnium
Pure Chlorination Wet Air Pollution Control

Ture Chlorination wet All Tollation Collifor			
BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
	mg/kg (pounds per million pounds) of		
Pollutant or pollu-	zirconium dioxide and hafnium dioxide		
tant property	produced		
Chromium	14.180	5.748	
Cyanide	7.663	3.065	
Lead	10.730	4.981	
Nickel	21.070	14.180	
Ammonia (as N)	5,108.000	2,245.000	

Table 33-29
Primary Zirconium and Hafnium
Reduction Area Vent Wet Air Pollution Control

BAT Effluent Limitations			
	Maximum for any 1 Maximum for		
	day	monthly average	
	mg/kg (pounds per	mg/kg (pounds per million pounds) of	
Pollutant or pollu-	zirconium dioxide and hafnium dioxide		
tant property	produced		
Chromium	1.364	0.553	
Cyanide	0.737	0.295	
Lead	1.032	0.479	
Nickel	2.027	1.364	
Ammonia (as N)	491.300	216.000	

Table 33-30
Primary Zirconium and Hafnium
Magnesium Recovery Off-Gas Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1 Maximum for	
	day	monthly average
	mg/kg (pounds per	million pounds) of
Pollutant or pollu-	zirconium dioxide and hafnium dioxide	
tant property	produced	
Chromium	7.671	3.110
Cyanide	4.147	1.659
Lead	5.805	2.695
Nickel	11.400	7.671
Ammonia (as N)	2,764.000	1,215.000

Table 33-31
Primary Zirconium and Hafnium
Magnesium Recovery Area-Vent Wet Air Pollution Control

Tragmentaria recovery raises vene viet rais remainer control		
BAT Effluent Limitations		
	Maximum for any 1 Maximum for	
	day	monthly average
	mg/kg (pounds per million pounds) of	
Pollutant or pollu-	zirconium dioxide and hafnium dioxide	
tant property	produced	
Chromium	4.262	1.728
Cyanide	2.304	0.921
Lead	3.225	1.497
Nickel	26.335	4.262
Ammonia (as N)	1,535.000	675.000

Table 33-32
Primary Zirconium and Hafnium
Zirconium Chip Crushing Wet Air Pollution Control

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per million pounds) of	
Pollutant or pollu-	zirconium dioxide and hafnium dioxide	
tant property	produced	
Chromium	0.000	0.000
Cyanide	0.000	0.000
Lead	0.000	0.000
Nickel	0.000	0.000
Ammonia (as N)	0.000	0.000

Table 33-33
Primary Zirconium and Hafnium
Acid Leachate From Zirconium Metal Production

Acid Leachate I folii Elicolium Metai I foduction		
BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
•	mg/kg (pounds per million pounds) of	
Pollutant or pollu-	zirconium dioxide and hafnium dioxide	
tant property	produced	
Chromium	10.900	4.420
Cyanide	5.893	2.357
Lead	8.250	3.831
Nickel	16.210	10.900
Ammonia (as N)	3,928.000	1,674.000

Table 33-34
Primary Zirconium and Hafnium
Acid Leachate From Zirconium Alloy Production

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per million pounds) of	
Pollutant or pollu-	zirconium dioxide and hafnium dioxide	
tant property	produced	
Chromium	5.835	2.366
Cyanide	3.154	1.262
Lead	4.416	2.050
Nickel	8.674	5.835
Ammonia (as N)	2,102.000	895.000

Table 33-35
Primary Zirconium and Hafnium
Leaching Rinse Waters From Zirconium Metal Production

BAT Effluent Limitations		
	Maximum for any 1	Maximum for
	day	monthly average
	mg/kg (pounds per	million pounds) of
Pollutant or pollu-	zirconium dioxide and hafnium dioxide	
tant property	produced	
Chromium	21.810	8.840
Cyanide	11.790	4.715
Lead	16.500	7.661
Nickel	32.410	21.810
Ammonia (as N)	7 856 000	3 453 000

Table 33-36
Primary Zirconium and Hafnium
Leaching Rinse Waters From Zirconium Alloy Production

BAT Effluent Limitations			
	Maximum for any 1	Maximum for	
	day	monthly average	
	mg/kg (pounds per million pounds) of		
Pollutant or pollu-	zirconium dioxide ar	zirconium dioxide and hafnium dioxide	
tant property	produced		
Chromium	0.292	0.118	
Cyanide	0.158	0.063	
Lead	0.221	0.103	
Nickel	1.434	0.292	
Ammonia (as N)	105.200	46.240	
H. C. D M. 1 1001 N. 402 CC 4 1 01			

History: Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.334 New source performance standards. Any new source subject to this subchapter shall achieve the following standards:

Table 33-37
Primary Zirconium and Hafnium
Sand Drying Wet Air Pollution Control

Sand Drying wet Air Fondtion Control		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide produced	
Chromium	0.210	0.085
Cyanide	0.114	0.045
Lead	0.159	0.074
Nickel	0.312	0.210
Ammonia (as N)	75.710	33.280
Total suspended solids	8.520	6.816
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-38 Primary Zirconium and Hafnium Sand Chlorination Off-Gas Wet Air Pollution Control

	NSPS	
	Maximum for any	Maximum for
	1 day	monthly average
	mg/kg (pounds per	million pounds) of
Pollutant or pollutant	zirconium dioxide a	nd hafnium dioxide
property	prod	
Chromium	16.080	6.521
Cyanide	8.694	3.478
Lead	12.170	5.651
Nickel	23.910	16.080
Ammonia (as N)	5,795.000	2,547.000
Total suspended solids	652.100	521.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-39
Primary Zirconium and Hafnium
Sand Chlorination Area-Vent Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	per million pounds)
Pollutant or pollutant	of zirconium dioxide and hafnium	
property	dioxide produced	
Chromium	3.154	1.279
Cyanide	1.705	0.682
Lead	2.387	1.108
Nickel	4.688	3.154
Ammonia (as N)	1,136.000	499.500
Total suspended solids	127.900	102.300
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-40
Primary Zirconium and Hafnium
Silicon Tetrachloride Purification Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
		er million pounds)
Pollutant or pollutant	of zirconium dioxide and hafnium	
property	dioxide produced	
Chromium	2.774	1.125
Cyanide	1.500	0.600
Lead	2.099	0.975
Nickel	4.124	2.774
Ammonia (as N)	999.500	439.400
Total suspended solids	112.500	89.980
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-41 Primary Zirconium and Hafnium Feed Make Up Wet Air Pollution Control

recalliance of the rain remaining control		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
		er million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide	produced
Chromium	2.103	0.852
Cyanide	1.137	0.455
Lead	1.591	0.739
Nickel	3.126	2.103
Ammonia (as N)	757.500	333.000
Total suspended		
solids	85.250	68.200
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-42 Primary Zirconium and Hafnium Iron Extraction Steam Stripper Bottoms

non Estate non Steum Surpper Bottoms		
	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	per million pounds)
Pollutant or pollutant	of zirconium di	oxide and hafnium
property	dioxide produced	
Chromium	0.830	0.337
Cyanide	0.449	0.180
Lead	0.628	0.292
Nickel	1.234	0.830
Ammonia (as N)	299.100	131.500
Total suspended solids	33.660	26.930
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-43
Primary Zirconium and Hafnium
Zirconium Filtrate

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
		per million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide	produced
Chromium	14.350	5.819
Cyanide	7.758	3.103
Lead	10.860	5.043
Nickel	21.330	14.350
Ammonia (as N)	5,171.000	2,273.000
Total suspended solids	581.900	465.500
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-44 Primary Zirconium and Hafnium Hafnium Filtrate

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
Pollutant or pollutant	mg/kg (pounds p	er million pounds)
	of zirconium die	oxide and hafnium
property	dioxide	produced
Chromium	0.000	0.000
Cyanide	0.000	0.000
Lead	0.000	0.000
Nickel	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
рН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-45
Primary Zirconium and Hafnium
Calcining Caustic Wet Air Pollution Control

	NSPS		
	Maximum for	Maximum for	
	any 1 day	monthly average	
	mg/kg (pounds j	per million pounds)	
Pollutant or pollutant	of zirconium dioxide and hafnium		
property	dioxide produced		
Chromium	3.329	1.350	
Cyanide	1.799	0.720	
Lead	2.519	1.170	
Nickel	4.948	3.329	
Ammonia (as N)	1,199.000	527.200	
Total suspended solids	135.000	108.000	
pH	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-46
Primary Zirconium and Hafnium
Pure Chlorination Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide produced	
Chromium	14.180	5.748
Cyanide	7.663	3.065
Lead	10.730	4.981
Nickel	21.070	14.180
Ammonia (as N)	5,108.000	2,245.000
Total suspended solids	574.800	459.800
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-47 Primary Zirconium and Hafnium Reduction Area Vent Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
		per million pounds)
Pollutant or pollutant	of zirconium di	oxide and hafnium
property	dioxide produced	
Chromium	1.364	0.553
Cyanide	0.737	0.295
Lead	1.032	0.479
Nickel	2.027	1.364
Ammonia (as N)	491.300	216.000
Total suspended solids	55.290	44.230
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-48
Primary Zirconium and Hafnium
Magnesium Recovery Off-Gas Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds	per million pounds)
Pollutant or pollutant	of zirconium di	oxide and hafnium
property	dioxide produced	
Chromium	7.671	3.110
Cyanide	4.147	1.659
Lead	5.805	2.695
Nickel	11.400	7.671
Ammonia (as N)	2,764.000	1,215.000
Total suspended solids	404.300	248.800
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-49
Primary Zirconium and Hafnium
Magnesium Recovery Area-Vent Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide	produced
Chromium	4.262	1.728
Cyanide	2.304	0.921
Lead	3.225	1.497
Nickel	6.335	4.262
Ammonia (as N)	1,535.000	675.000
Total suspended solids	172.800	138.200
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-50
Primary Zirconium and Hafnium
Zirconium Chip Crushing Wet Air Pollution Control

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of zirconium die	oxide and hafnium
property	dioxide	produced
Chromium	0.000	0.000
Cyanide	0.000	0.000
Lead	0.000	0.000
Nickel	0.000	0.000
Ammonia (as N)	0.000	0.000
Total suspended solids	0.000	0.000
pН	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-51
Primary Zirconium and Hafnium
Acid Leachate From Zirconium Metal Production

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds p	er million pounds)
Pollutant or pollutant	of zirconium dioxide and hafnium	
property	dioxide produced	
Chromium	10.900	4.420
Cyanide	5.893	2.357
Lead	8.250	3.831
Nickel	16.210	10.900
Ammonia (as N)	3,928.000	1,674.000
Total suspended solids	442.000	353.600
pH (1) With the S7.5 to 10	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-52
Primary Zirconium and Hafnium
Acid Leachate From Zirconium Alloy Production

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds per million pounds)	
Pollutant or pollutant	of zirconium dioxide and hafnium	
property	dioxide produced	
Chromium	5.835	2.366
Cyanide	3.154	1.262
Lead	4.416	2.050
Nickel	8.674	5.835
Ammonia (as N)	2,102.000	895.800
Total suspended solids	236.600	189.300
pH	(1)	(1)

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-53
Primary Zirconium and Hafnium
Leaching Rinse Waters From Zirconium Metal Production

NSPS			
	Maximum for	Maximum for	
	any 1 day	monthly average	
	mg/kg (pounds per million pounds)		
Pollutant or pollutant	of zirconium dioxide and hafnium		
property	dioxide produced		
Chromium	21.810	8.840	
Cyanide	11.790	4.715	
Lead	16.500	7.661	
Nickel	32.410	21.810	
Ammonia (as N)	7,856.000	3,453.000	
Total suspended solids	884.000	707.200	
pН	(1)	(1)	

⁽¹⁾ Within the range of 7.5 to 10.0 at all times.

Table 33-54 Primary Zirconium and Hafnium Leaching Rinse Waters From Zirconium Alloy Production

	NSPS	
	Maximum for	Maximum for
	any 1 day	monthly average
	mg/kg (pounds per million pounds)	
Pollutant or pollutant	of zirconium dioxide and hafnium	
property	dioxide produced	
Chromium	0.292	0.118
Cyanide	0.158	0.063
Lead	0.221	0.103
Nickel	1.434	0.292
Ammonia (as N)	105.200	46.240
Total suspended solids	11.840	9.468
pН	(1)	(1)

(1) Within the range of 7.5 to 10.0 at all times. **History:** Cr. Register, March, 1991, No. 423, eff. 4-1-91.

NR 274.336 Pretreatment standards for new sources. Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve the limitations set forth in s. NR 274.333.

Note: The Wisconsin administrative code corresponds to the code of federal regulations as cross referenced in the following table:

State Code	Corresponding Federal Regulation
NR 205.03	40 CFR 401.11
NR 205.04	40 CFR 401.11
ch. NR 211	40 CFR Part 403
NR 211.03	40 CFR 403.3
NR 211.13	40 CFR 403.7
NR 211.14	40 CFR 403.13
ch. NR 219	40 CFR Part 136
ch. NR 256	40 CFR Part 464
ch. NR 274	40 CFR Part 421