Chapter NR 219

ANALYTICAL TEST METHODS AND PROCEDURES

NR 219.01	Purpose	NR 219.05	Approval of alternate	test
NR 219.02	Applicability		procedures	
NR 219.03	Definitions	NR 219.06	List of approved	test
NR 219.04	Application for alternate test		procedures	
	procedures			

NR 219.01 Purpose. The purpose of this chapter is to establish analytical test methods and procedures applicable to effluent limitations for discharges from point sources as authorized by section 147.04(5), Wis. Stats.

History: Cr. Register, August, 1976, No. 248, eff, 9-1-76.

NR 219.02 Applicability. The procedures prescribed herein shall, except as provided in NR 219.05, be used in the determination of concentrations and quantities of pollutant parameters as required for:

(1) An application submitted to the department for a permit under chapter 147, Wisconsin Statutes.

(2) Reports required to be submitted by dischargers in accordance with the conditions of issued permits.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76.

NR 219.03 Definitions. As used in this chapter:

(1) Standard Methods - means "Standard Methods for the Examination of Water and Waste Water," 13th Edition, 1971. This publication is available from the American Public Health Association, 1015 18th Street NW, Washington, D.C. 20036.

(2) ASTM - means "Annual Book of Standards, Part 23, Water, Atmospheric Analysis, 1972." This publication is available from the American Society for Testing and Materials, 1916 Race Street, Philadelphia, Pennsylvania 19103.

(3) EPA Methods - means "Methods for Chemical Analysis of Water and Wastes," 1971, Environmental Protection Agency, Analytical Quality Control Laboratory, Cincinnati, Ohio. This publication is available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D. C. 20402 (Stock Number 5501-0067).

(4) Regional Administrator - the term "Regional Administrator" means the Regional Administrator of Region V, U.S. Environmental Protection Agency.

(4m) Copies of the publications identified above, and of the publications referred to in footnotes (3) through (7) of NR 219.06 are available for inspection at the offices of the department of natural resources, the secretary of state, and the revisor of statutes.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76.

192 WISCONSIN ADMINISTRATIVE CODE

NR 219.04 Application for alternate test procedures. (1) Any person may apply to the regional administrator for approval of an alternative test procedure.

(2) The applicant shall submit his application to the regional administrator through the department.

(3) An application for an alternate test procedure shall be made by letter in triplicate, and

(a) Provide the name and address of the responsible person or firm making the discharge (if not the applicant), the number of the existing or pending permit, the name of the issuing agency, and the discharge serial number,

(b) Identify the pollutant or parameter for which approval of an alternate testing procedure is being requested,

(c) Provide justification for using testing procedures other than those specified in NR 219, and

(d) Provide a detailed description of the proposed alternate test procedure, together with references to published studies of the applicability of the alternate test procedure to the effluents in question.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76.

NR 219.05 Approval of alternate test procedures. (1) The regional administrator has final responsibility for approval of any alternate test procedure.

(2) Within 30 days of receipt of an application, the department will forward such application, together with its recommendations, to the regional administrator. Where the director recommends rejection of the application for scientific and technical reasons which he provides, the regional administrator shall deny the application.

(3) Within 90 days of his receipt of an application for an alternate test procedure, the regional administrator will notify the applicant and the department agency of approval or rejection, or shall specify the additional information which is required to determine whether to approve the proposed test procedure.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76.

DEPARTMENT OF NATURAL RESOURCES

۱.

References Standard Parameter and units General analytical methods: Method Methods ASTM Methods Alkalinity as CaCO₃mg CaCO₃/liter. Titration: electrometric, manual or p. 370 p. 143 automated method-

NR 219.06 - List of approved test procedures

		methyl orange.			p. 8
2.	B.O.D. five day mg/liter.	Modified winkler or probe method	p. 489		
3.	Chemical oxygen demand (C.O.D.) mg/liter.	Dichromate reflux.	p. 495	p. 219	p. 17
4.	Total solids mg/liter.	Gravimetric 103-105°C.	p. 535		p. 280
5.	Total dissolved (filterable) solids mg/liter.	Glass fiber filtration 180°C.			p. 275
6.	Total suspended (nonfilterable) solids mg/liter.	Glass fiber filtration 103-105° C.	p. 537		p. 278
7.	Total volatile solids mg/liter.	Gravimetric 550° C.	p. 536		p. 282
8.	Ammonia (as N) mg/liter.	Distillation—nesslerization or titration			p. 134
9.	Kjeldahl nitrogen (as N)	automated phenolate. Digestion +	p. 469		p. 141 p. 149
э.	mg/liter.	distillation—nesslerization or titration automated digestion phenolate.	p. 405		p. 149 p. 157
10.	Nitrate (as N) mg/liter.	Cadmium reduction; brucine	p. 458	p. 124	p. 170
		sulfate; automated cadmium or	p. 461		p. 175
		hydrazine reduction.		10	p. 185
11.	Total phosphorus (as P)	Persulfate digestion and single	p. 526	p. 42	p. 235
	mg/liter.	reagent (ascorbic acid), or manual digestion, and	p. 532		p. 246 p. 259
		automated single reagent or			p. 205
		stannous chloride.			
12.	Acidity mg CaCO ₃ /liter.	Electrometric end point or		p. 148	
		phenolphthalein end point.		• • • • • •	
13.	Total organic carbon (TOC) mg/liter.	Combustion—infrared method.	p. 257	p. 702	p. 221
14.	Hardnesstotal mg	EDTA titration; automated	p. 179	p. 170	p. 76
	CaCO ₃ /liter	colorimetric atomic absorption.			p. 78
15.	Nitrite (as N) mg/liter.	Manual or automated colorimetric diazotization.			p. 185 p. 195
Analyt	tical methods for trace metal				p. 195
16.	Aluminum—total ² mg/liter.	Atomic absorption.	p. 210		p. 98
17.	Antimony—total ² mg/liter.	Atomic absorption. ⁴			
18.	Arsenic—total mg/liter.	Digestion plus silver	p. 65		p. 13
10		diethyldithiocarbamate; atomic absorption. ³	p. 62		
19.20.	Barium—total² mg/liter. Beryllium—total²	Atomic absorption. ⁴	р. 210 р. 67		
20.	mg/liter.	Aluminum; atomic absorption.	p. 67 p. 210		
21.	Boron-total mg/liter.	Curcumin.	p. 210 p. 69		
22.	Cadmium—total ²	Atomic absorption; colorimetric.	p. 210	p. 692	p. 101
	mg/liter.		p. 422	p. 00 -	p. 101
23.	Calcium—total ² mg/liter.	EDTA titration; atomic absorption.	p. 84	p. 692	p. 102
24.	Chromium VI mg/liter.	Extraction and atomic absorption; colorimetric.	p. 429		p. 94
25.	Chromium—total ²	Atomic absorption; colorimetric.	p. 210	p. 692	p. 104
00	mg/liter.		p. 426	p. 403	
26.	Cobalttotal ² mg/liter.	Atomic absorption.	010	p. 692	
27.	Copper—total ² mg/liter.	Atomic absorption; colorimetric.	p. 210	p. 692	p. 106
28.	Iron total ² ma/liter	da	p. 430	p. 410	n 100
20.	Iron—total² mg/liter.	do	р. 210 р. 433	p. 692 p. 152	p. 108
29.	Lead—total ² mg/liter.	do	p. 433 p. 210	p. 152 p. 692	p.110
20.	wour mg/mer.	40	p. 210 p. 436	p. 034	b.110
30.	Magnesium—total ² mg/liter.	Atomic absorption; Gravimetric.	p. 210	p. 692	p. 112

Register, August, 1976, No. 248 Environmental Protection

193

EPA

р. 6

WISCONSIN ADMINISTRATIVE CODE

194	WISCONSIN	ADMINISTRATIVE COD			
			p. 416		
			p. 201		
31.	Manganese—total ² mg/liter.	Atomic absorption.	p. 210	p. 692	p. 114
32.	Mercury-total mg/liter.	Flameless atomic absorption. ⁵			
33.	Molybdenum—total ² mg/liter.	Atomic absorption.			
34.	Nickel—total ² mg/liter.	Atomic absorption; colorimetric. ⁴	p. 443	p. 692	
35.	Potassium—total ²	Atomic absorption; colorimetric;	p. 283	p. 326	p. 115
	mg/liter.	flame photometric.	p. 285	•	-
36.	Selenium-total mg/liter.	Atomic absorption. ³	•		
37.	Silver-total ² .	Atomic absorption.*	p. 210		
38.	Sodium-total ² mg/liter.	Flame photometric; atomic	p. 317	p. 326	p. 118
007	Sourain Jona ing, more	absorption.	proti	p. 00	P. 110
39.	Thallium—total ² mg/liter.	Atomic absorption.4			
40.	Tintotal ² mg/liter.	do			
41.	Titanium-total mg/liter.	do			
42.	Vanadium—total ²	Atomic absorption; ⁴ colorimetric.	p. 357		
-12.	mg/liter.	reconne absorption, colorimetric.	p. 001		
43.	Zinc—total ² mg/liter.	Atomic absorption; colorimetric.	p. 210	p. 692	p. 120
40.	Zine-total mg/nter.	Atomic absorption, colormietre.	p. 210 p. 444	p. 002	p. 120
			p. 444		
Analy	tical methods for nutrients, a	anions, and organics:			
44.	Organic nitrogen (as N)	Kjeldahl nitrogen minus ammonia	p. 468		p. 149
чч.	mg/liter.	nitrogen.	P. 400		P. 143
45.	Ortho-phosphate (as P)	Direct single reagent; automated	n 520	n 19	n 995
40.			p. 532	p. 42	p. 235
	mg/liter.	single reagent or stannous			p. 246
40	(1)	chloride.	- 901		p. 259
46.	Sulfate (as SO₄) mg/liter.	Gravimetric; turbidimetric;	p. 331	p. 51	p. 286
		automated colorimetric—barium	p. 334	p. 52	p. 288
47		chloranllate.	***		
47.	Sulfide (as S) mg/liter.	Titrimetric—iodine.	p. 551		p. 294
48.	Sulfite (as SO ₈) mg/liter.	Titrimetric; iodide-iodate.	р. 337	p. 261	
49.	Bromide mg/liter.	do		p. 216	
50.	Chloride mg/liter.	Silver nitrate; mercuric nitrate;	p. 96	p. 23	p. 29
		automated colorimetric-	p. 97	p. 21	p. 31
		ferricyanide.			
51.	Cyanide—total mg/liter.	Distillation—silver nitrate	p. 397	p. 556	p. 41
		titration or pyridine pyrazolone			
		colorimetric.			
52.	Fluoride mg/liter.	Distillation-SPADNS.	p. 171	p. 191	p. 64
			p. 174		
53.	Chlorine—total residual	Colorimetric; amperometric	p. 382	p. 223	
	mg/liter.	titration.			
54.	Oil and grease mg/liter.	Liquid-Liquid extraction with	p. 254		
		trichlorotrifluoroethane.			
55.	Phenols mg/liter.	Colorimetric, 4 AAP.	p. 502	p. 445	p. 232
56.	Surfactants mg/liter.	Methylene blue colorimetric.	p. 339	p. 619	p. 131
57.	Algicides mg/liter.	Gas chromatography. ⁶	-	•	•
58.	Benzidine mg/liter.	Oxidation—colorimetric.7			
59.	Chlorinated organic	Gas chromatography. ⁶			
	compounds (except				
	pesticides) mg/liter.				
60.	Pesticides mg/liter.	Gas chromatography. ⁶			
00.	2 000101400 mg, 11011	ouo omomuooBraphiji			
Analy	tical methods for physical an	d biological parameters:			
61.	Color platinum-cobalt	Colorimetric; spectrophotometric.	p. 160		p. 38
	units or dominant		p. 392		p. 00
	wave-length, hue,		p. 052		
	luminance, purity.				
62.	Specific conductance	Wheatstone bridge.	p. 323	p. 163	p. 284
02.	mho/cm at 25° C.	Wheatstone bridge.	p. 020	p. 103	p. 204
63.	Turbidity jackson units.	Turbidimeter.	p. 350	n 167	n 900
63. 64.	Fecal streptococci	MPN; membrane filter; plate	p. 350 p. 689	p. 467	p. 308
0.4.					
	bacteria number/100	count.	p. 690		
	ml.		p. 691		
See Note at end of Table I					
65.	Coliform bacteria (fecal)	MPN; membrane filter.	n 660		
00.		wir in, memorane mier.	p. 669		
66.	number/100 ml. Coliform bacteria (total)	do	p. 684		
00,	Coliform bacteria (total)	do	p. 664		
Register, August, 1976, No. 248					
-0-0	,				

Register, August, 1976, No. 248 Environmental Protection

p. 679

Radiological parameters:

number/100 ml.

67.	Alpha—total pCi/liter.	Proportional counter; scintillation counter.	p. 598	p. 50 9
68.	Alpha—counting error pCi/liter.	do	p. 598	p. 512
69.	Beta-total pCi/liter.	Proportional counter.	p. 598	p. 478
70.	Beta-counting error pCi/liter.	do	p. 598	p. 478
71.	Radium—total pCi/liter.	Proportional counter; scintillation counter.	p. 611 p. 617	p. 674

'A number of such systems manufactured by various companies are considered to be comparable in their performance. In additon, another technique, based on Combustion-Methane Detection, is also acceptable.

²For the determination of total metals the sample is not filtered before processing. Choose a volume of sample appropriate for the expected level of metals. If much suspended material is present, as little as 50-100 ml of well-mixed sample will most probably be sufficient. (The sample volume required may also vary proportionally with the number of metals to be determined.)

Transfer a representative aliquot of the well-mixed sample to a Griffin beaker and add 3 ml of concentrated distilled HNO₃. Place the beaker on a hotplate and evaporate to dryness making certain that the sample does not boil. Cool the beaker and add another 3 ml portion of distilled concentrated HNO₃. Cover the beaker with a watch glass and return to the hotplate. Increase the temperature of the hotplate so that a gentle reflux action occurs. Continue heating, adding additional acid as necessary until the digestion is complete, generally indicated by a light colored residue. Add (1:1 with distilled water) distilled concentrated HCl in an amount sufficient to dissolve the residue upon warming. Wash down the beaker walls and the watch glass with distilled water and filter the sample to remove silicates and other insoluble materials that could clog the atomizer. Adjust the volume to some predetermined value based on the expected metal concentrations. The sample is now ready for analysis. Concentrations so determined shall be reported as "total".

[°]See D.C. Manning, "Technical Notes", Atomic Absorption Newsletter, Vol. 10, No. 6 p. 123, 1971. Available from Perkin-Elmer Corporation, Main Avenue, Norwalk, Connecticut 06852.

'Atomic absorption method available from Methods Development and Quality Assurance Research Laboratory, National Environmental Research Center, USEPA, Cincinnati, Ohio 45268.

For updated method, see: Journal of the American Water Works Association 64, No. 1, pp. 20-25 (Jan. 1972) or ASTM Method D 3223-73, American Society for Testing and Materials Headquarters, 1916 Race St., Philadelphia, Pa. 19103.

⁹Interim procedures for algicides, chlorinated organic compounds, and pesticides can be obtained from the Methods Development and Quality Assurance Research Laboratory, National Environmental Research Center, USEPA, Cincinnati, Ohio 45268.

'Benzidine may be estimated by the method of M.A. El-Dib, "Colorimetric Determination of Aniline Derivatives in Natural Waters", El-Dib, M.A., Journal of the Association of Othicial Analytical Chemists, Vol. 54, No. 6, Nov., 1971. pp. 1383-1387.

[†]As a prescreening measurement.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76.