295

PUBLIC SERVICE COMMISSION

- (3) Each bend must have a smooth contour and be free from buckling, cracks, or any other mechanical damage.
- (4) On pipe containing a longitudinal weld, the longitudinal weld must be as near as practicable to the neutral axis of the bend unless:
 - (A) The bend is made with an internal bending mandrel; or
- (B) The pipe is 12 inches or less in outside diameter with a diameter to wall thickness ratio less than 70.
- (b) Each circumferential weld of steel pipe which is located where the stress during bending causes a permanent deformation in the pipe must be non-destructively tested either before or after the bending process.
- (c) Wrought-steel welding elbows and transverse segments of these elbows may not be used for changes in direction on steel pipe that is 2 inches or more in diameter unless the arc length, as measured along the crotch, is at least 1 inch.

(Sec. 3, Pub. L. 90-481, 82 Stat. 721, 49 USC 1672; 40 FR 43901, 49 CFR 1.53).

- **PSC 192.313** (a) (5) Smooth bends on pipe 4 inches in size and smaller shall have a difference between the maximum and minimum diameter of not more than 12.5 percent of the nominal diameter.
- (b) Each circumferential weld of steel pipe that is subjected to stress during bending must be nondestructively tested.
- (c) Wrought-steel welding elbows and transverse segments of these elbows may not be used for changes in direction on steel pipe that is 2 inches or more in diameter unless the arc length, as measured along the crotch, is at least 1 inch.
- (d) Each bend, other than a wrinkle bend made in accordance with 192.315, must have a smooth contour and be free of mechanical damage.

192.315 Wrinkle bends in steel pipe.

- (a) A wrinkle bend may not be made on steel pipe to be operated at a pressure that produces a hoop stress of 30%, or more, of SMYS.
 - (b) Each wrinkle bend on steel pipe must comply with the following:
 - (1) The bend must not have any sharp kinks.
- (2) When measured along the crotch of the bend, the wrinkles must be a distance of at least one pipe diameter.
- (3) On pipe 16 inches or larger in diameter, the bend may not have a deflection of more than $1\frac{1}{2}$ of or each wrinkle.
- (4) On pipe containing a longitudinal weld the longitudinal seam must be as near as practicable to the neutral axis of the bend.

192.317 Protection from hazards.

(a) Each transmission line or main must be protected from washouts, floods, unstable soil, landslides, or other hazards that may cause the pipeline to move or to sustain abnormal loads. In addition, offshore pipelines must be protected from damage by mud slides, water currents, hurricanes, ship anchors, and fishing operations.

- (b) Each aboveground transmission line or main, not located offshore or in inland navigable water areas, must be protected from accidental damage by vehicular traffic or other similar causes, either by being placed at a safe distance from the traffic or by installing barricades.
- (c) Pipelines, including pipe risers, on each platform located offshore or in inland navigable waters must be protected from accidental damage by vessels.

192.319 Installation of pipe in a ditch.

- (a) When installed in a ditch, each transmission line that is to be operated at a pressure producing a hoop stress of 20% or more of SMYS must be installed so that the pipe fits the ditch so as to minimize stresses and protect the pipe coating from damage.
- **PSC 192.319** (a) This includes grading the ditch so that the pipe has a firm, substantially continuous bearing on the bottom of the ditch. When long sections of pipe that have been welded alongside the ditch are lowered in, care shall be exercised so as not to jerk the pipe or impose any strains that may kink or put a permanent bend in the pipe.
- (b) When a ditch for a transmission line or main is backfilled, it must be backfilled in a manner that—
 - (1) Provides firm support under the pipe; and
- (2) Prevents damage to the pipe and pipe coating from equipment or from the backfill material.
- (c) All offshore pipe in water at least 12 feet deep but not more than 200 feet deep, as measured from the mean low tide must be installed so that the top of the pipe is below the natural bottom unless the pipe is supported by stanchions, held in place by anchors or heavy concrete coating, or protected by an equivalent means.
- **PSC 192.319** (b) (3) If there are large rocks in the material to be used for backfill, care should be used to prevent damage to the coating or pipe by such means as the use of rock shield material, or by making the initial fill with rock free material to a sufficient depth over the pipe to prevent rock damage.
- **PSC 192.319** (b) (4) Where flooding of the trench is done to consolidate the backfill, care shall be exercised to see that the pipe is not floated from its firm bearing on the trench bottom.
- **PSC 192.319** (c) The provisions of 192.319 (a) shall also apply to mains operating at less than 20% of the SMYS.

192.321 Installation of plastic pipe.

- (a) Plastic pipe must be installed below ground level.
- (b) Plastic pipe that is installed in a vault or any other below grade enclosure must be completely encased in gas-tight metal pipe and fittings that are adequately protected from corrosion.
- (c) Plastic pipe must be installed so as to minimize shear or tensile stresses.
- (d) Thermoplastic pipe that is not encased must have a minimum wall thickness of 0.090 inches, except that pipe with an outside diameter Register, May, 1978, No. 269

of 0.875 inches or less may have a minimum wall thickness of 0.062 inches.

- (e) Plastic pipe that is not encased must have an electrically conductive wire or other means of locating the pipe while it is underground.
- (f) Plastic pipe that is being encased must be inserted into the casing pipe in a manner that will protect the plastic. The leading end of the plastic must be closed before insertion.
- **PSC 192.321** (f) The casing pipe shall be reamed and cleaned to the extent necessary to remove any sharp edges, projections, or abrasive material which could damage the plastic during and after insertion. That portion of the plastic piping which spans disturbed earth shall be adequately protected by a bridging piece or other means from crushing or shearing from external loading or settling of backfill. Care shall be taken to prevent the plastic piping from bearing on the end of the casing.
- **PSC 192.321** (g) Care shall be exercised to avoid rough handling of plastic pipe and tubing. It shall not be pushed or pulled over sharp projections, dropped or have other objects dropped upon it. Caution shall be taken to prevent kinking or buckling, and any kinks or buckles which occur shall be removed by cutting out as a cylinder.
- **PSC 192.321** (h) Changes in direction of plastic piping may be made with bends, tees or elbows under the following limitations:
- (1) Plastic pipe and tubing may be deflected to a radius not less than the minimum recommended by the manufacturer for the kind, type, grade, wall thickness and diameter of the particular plastic used.
- (2) The bends shall be free of buckles, cracks, or other evidence of damage.
- (3) Changes in direction that cannot be made in accordance with PSC 192.321 (h) (1) above shall be made with elbow-type fittings.
 - (4) Miter bends are not permitted.
- (5) Branch connections shall be made only with socket-type tees or other suitable fittings specifically designed for the purpose.
- **PSC 192.321** (i) Plastic piping shall be laid on undisturbed or well compacted soil. If plastic piping is to be laid in soils which may damage it, the piping shall be protected by suitable rock free materials before back-filling is completed. Plastic piping shall not be supported by blocking. Well tampered earth or other continuous support shall be used.

192.323 Casing.

Each casing used on a transmission line or main under a railroad or highway must comply with the following:

- (a) The casing must be designed to withstand the superimposed loads.
- (b) If there is a possibility of water entering the casing, the ends must be sealed.

296-2 WISCONSIN ADMINISTRATIVE CODE

- (c) If the ends of an unvented casing are sealed and the sealing is strong enough to retain the maximum allowable operating pressure of the pipe, the casing must be designed to hold this pressure at a stress level of not more than 72% of SMYS.
- (d) If vents are installed on a casing, the vents must be protected from the weather to prevent water from entering the casing.
- **PSC 192.323** (e) Casing requirements of highway authorities shall be followed; however, construction type shall not be any less than provided by this code.

192.325 Underground clearance.

- (a) Each transmission line must be installed with at least 12 inches of clearance from any other underground structure not associated with the transmission line. If this clearance cannot be attained, the transmission line must be protected from damage that might result from the proximity of the other structure.
- (b) Each main must be installed with enough clearance from any other underground structure to allow proper maintenance and to protect against damage that might result from proximity to other structures.
- **PSC192.325** (b) If the structure is a public building where people assemble or in areas such as playground, assembly ground, or park, wherever possible the clearance shall be at least 100 feet if the main is operated at more than 100 p.s.i. but less than 500 p.s.i. and shall be at least 150 feet if operated at 500 p.s.i. or more. If these clearances cannot be maintained, then the next higher type of construction shall be used except such construction may be pressure-tested the same as the remainder of the line. No distribution main or transmission line shall be installed under buildings.
- (c) In addition to meeting the requirements of paragraph (a) or (b) of this section, each plastic transmission line or main must be installed with sufficient clearance, or must be insulated, from any source of heat so as to prevent the heat from impairing the serviceability of the pipe.
- (d) Each pipe-type or bottle-type holder must be installed with a minimum clearance from any other holder as prescribed in 192.175 (b).

192.327 Cover.

(a) Except as provided in paragraphs (c) and (e) of this section, each buried transmission line must be installed with a minimum cover as follows:

Location	Normal Soil	Consolidated rock
	Inches	Inches
Class 1 location 30		18
Class 2, 3, and 4 locations 36		24
Drainage ditches of public roads and railroad crossings 36		24

(b) Except as provided in paragraphs (c) and (d) of this section, each buried main must be installed with at least 24 inches of cover.

- (c) Where an underground structure prevents the installation of a transmission line or main with the minimum cover, the transmission line or main may be installed with less cover if it is provided with additional protection to withstand anticipated external loads.
- (d) A main may be installed with less than 24 inches of cover if the law of the State or municipality—
 - (1) Establishes a minimum cover of less than 24 inches;
- (2) Requires that mains be installed in a common trench with other utility lines; and
- (3) Provides adequately for prevention of damage to the pipe by external forces.
- (e) All pipe which is installed in a navigable river, stream, or harbor must have a minimum cover of 48 inches in soil or 24 inches in consolidated rock, and all pipe installed in any offshore location under water less than 12 feet deep, as measured from mean low tide, must have a minimum cover of 36 inches in soil or 18 inches in consolidated rock, between the top of the pipe and the natural bottom. However, less than the minimum cover is permitted in accordance with paragraph (c) of this section.

Subpart H—Customer Meters, Service Regulators, and Service Lines

192.351 Scope.

This subpart prescribes minimum requirements for installing customer meters, service regulators, service lines, service line valves, and service line connections to mains.

192.353 Customer meters and regulators: location.

(a) Each meter and service regulator, whether inside or outside of a building, must be installed in a readily accessible location and be protected from corrosion and other damage. However, the upstream regulator in a series may be buried.

(b) Each service regulator installed within a building must be located as near as practical to the point of service line entrance.

PSC 192,353 (b) Whenever practical, the meters shall be installed at the same location.

(c) Each meter installed within a building must be located in a ventilated place and not less than 3 feet from any source of ignition or any source of heat which might damage the meter.

PSC 192.353 (c) Meters shall not be installed in bedrooms, closets, bathrooms, under combustible stairways or in unventilated or inaccessible places, nor closer than three feet to sources of ignition, including furnaces and water heaters.

(d) Where feasible, the upstream regulator in a series must be located outside the building, unless it is located in a separate metering

or regulated building.

192.355 Customer meters and regulators: protection from damage.

(a) Protection from vacuum or back pressure. If the customer's equipment might create either a vacuum or a back pressure, a device must be installed to protect the system.

PSC 192.355 (a) (1) Install a check valve or equivalent if:

(i) The utilization equipment might induce a back-pressure.

- (ii) The gas utilization equipment is connected to a source of oxygen or compressed air.
- (iii) Liquefied petroleum gas or other supplementary gas is used as standby and might flow back into the meter. A three-way valve installed to admit the standby supply and at the same time shut off the regular supply, can be substituted for a check valve if desired.
- (b) Service regulator vents and relief vents. The outside terminal of each service regulator vent and relief vent must—

(1) Be rain and insect resistant;

- (2) Be located at a place where gas from the vent can escape freely into the atmosphere and away from any opening into the building; and
- (3) Be protected from damage caused by submergence in areas where flooding may occur.
- PSC 192.355 (b) (3) At locations where service regulators might be submerged during floods, either a special anti-flood type breather vent fitting shall be installed, or the vent line shall be extended above the height of the expected flood waters.
- (c) Pits and vaults. Each pit or vault that houses a customer meter or regulator at a place where vehicular traffic is anticipated, must be able to support that traffic.

192.357 Customer meters and regulators: installation.

- (a) Each meter and each regulator must be installed so as to minimize anticipated stresses upon the connecting piping and the meter.
- (b) When close all-thread nipples are used, the wall thickness remaining after the threads are cut must meet the minimum wall thickness requirements of this part.

(c) Connections made of lead or other easily damaged material may not be used in the installation of meters or regulators.

(d) Each regulator that might release gas in its operation must be vented to the outside atmosphere.

192.359 Customer meter installations: operating pressure.

- (a) A meter may not be used at a pressure that is more than 67% of the manufacturer's shell test pressure.
- (b) Each newly installed meter manufactured after November 12, 1970 must have been tested to a minimum of 10 p.s.i.g.
- (c) A rebuilt or repaired tinned steel case meter may not be used at a pressure that is more than 50% of the pressure used to test the meter after rebuilding or repairing

192.361 Service lines: installation.

- (a) Depth. Each buried service line must be installed with at least 12 inches of cover in private property and at least 18 inches of cover in streets and roads. However, where an underground structure prevents installation at those depths, the service line must be able to withstand any anticipated external load.
- (b) Support and backfill. Each service line must be properly supported on undisturbed or well-compacted soil, and material used for backfill must be free of materials that could damage the pipe or its coating.
- (c) Grading for drainage. Where condensate in the gas might cause interruption in the gas supply to the customer, the service line must be graded so as to drain into the main or into drips at the low points in the service line.
- (d) Protection against piping strain and external loading. Each service line must be installed so as to minimize anticipated piping strain and external loading.
- (e) Installation of service lines into buildings. Each underground service line installed below grade through the outer foundation wall of a building must—
- (1) In the case of a metal service line, be protected against corrosion;
- (2) In the case of a plastic service line, be protected from shearing action and backfill settlement; and
- (3) Be sealed at the foundation wall to prevent leakage into the building.
- (f) Installation of service lines under buildings. Where an underground service line is installed under a building—
 - (1) It must be encased in a gas-tight conduit;
- (2) The conduit and the service line must, if the service line supplies the building it underlies, extend into a normally usable and accessible part of the building; and
- (3) The space between the conduit and the service line must be sealed to prevent gas leakage into the building and, if the conduit is sealed at both ends, a vent line from the annular space must extend to a point where gas would not be a hazard, and extend above grade, terminating in a rain and insect resistant fitting.
- PSC 192.361 (g) It is recommended that service to one customer and/or one building be supplied through one service and one shut-off valve.

192.363 Service lines: valve requirements.

- (a) Each service line must have a service-line valve that meets the applicable requirements of subparts B and D of this part. A valve incorporated in a meter bar, that allows the meter to be bypassed, may not be used as a service-line valve.
- (b) A soft seat service line valve may not be used if its ability to control the flow of gas could be adversely affected by exposure to anticipated heat.
- (c) Each service-line valve on a high-pressure service line, installed above ground or in an area where the blowing of gas would be hazardous, must be designed and constructed to minimize the possibility of the removal of the core of the valve with other than specialized tools.

192,365 Service lines: location of valves.

- (a) Relation to regulator or meter. Each service-line valve must be installed upstream of the regulator or, if there is no regulator, upstream of the meter.
- (b) Outside valves. Each service line must have a shut-off valve in a readily accessible location that, if feasible, is outside of the building.
- PSC 192.365 (b) Whenever gas is supplied to a theatre, church, school, factory or other building where large numbers of persons assemble, an outside valve in such case will be required.
- (c) Underground valves. Each underground service-line valve must be located in a covered durable curb box or standpipe that allows ready operation of the valve and is supported independently of the service lines.
- 192.367 Service lines: general requirements for connections to main piping.
- (a) Location. Each service-line connection to a main must be located at the top of the main or, if that is not practical, at the side of the main, unless a suitable protective device is installed to minimize the possibility of dust and moisture being carried from the main into the service line.
- (b) Compression-type connection to main. Each compression-type service line to main connection must—
- (1) Be designed and installed to effectively sustain the longitudinal pull-out or thrust forces caused by contraction or expansion of the piping, or by anticipated external or internal loading; and
- (2) If gaskets are used in connecting the service line to the main connection fitting, have gaskets that are compatible with the kind of gas in the system.

192.369 Service lines: connections to cast iron or ductile iron mains.

- (a) Each service line connected to a cast iron or ductile iron main must be connected by a mechanical clamp, by drilling and tapping the main, or by another method meeting the requirements of 192,273.
- (b) If a threaded tap is being inserted, the requirements of 192.151 (b) and (c) must also be met.

192.371 Service lines: steel.

Each steel service line to be operated at less than 100 p.s.i.g. must be constructed of pipe designed for a minimum of 100 p.s.i.g.

PSC 192.371

- (a) When coated steel pipe is to be installed as a service line in a bore, care should be exercised to prevent damage to the coating during installation. For all installations to be made by boring, driving or similar methods or in a rocky type soil, the following practices or their equivalents are recommended:
- (1) When a service line is to be installed by boring or driving and a coated steel pipe is to be used for the service line, the coated pipe should not be used as the bore pipe or drive pipe and left in the ground as part of the service line. It is preferable to make such installations by first making an oversize bore, removing the pipe used for boring and then inserting the coated pipe.

(2) Coated steel pipe preferably should not be inserted through a bore in exceptionally rocky soil where there is a likelihood of damage to the coating resulting from the insertion.

192.373 Service lines: cast iron and ductile iron.

(a) Cast iron or ductile iron pipe less than 6 inches in diameter may not be installed for service lines.

(b) If cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service line which extends through the building wall must be of steel pipe.

(c) A cast iron or ductile iron service line may not be installed in unstable soil or under a building.

192.375 Service lines: plastic.

(a) Each plastic service line outside a building must be installed below ground level, except that it may terminate above ground and outside the building, if—

(1) The above ground part of the plastic service line is protected

against deterioration and external damage; and

(2) The plastic service line is not used to support external loads.

PSC 192.375 (3) The above ground portion of the plastic service line is completely enclosed in a rigid metal tube or metal pipe. The metal tube or pipe shall have a minimum wall thickness of 0.035 in., adequate protection against corrosion, and shall extend a minimum of 6 inches below grade.

(b) Each plastic service line inside a building must be protected

against external damage.

192.377 Service lines: copper.

Each copper service line installed within a building must be protected against external damage.

PSC 192.377

Copper service lines installed within a building may not be concealed.

PSC 192.377 (a) Ferrous valves and fittings installed on underground copper service lines shall be protected from contact with the soil or insulated from the copper pipe.

192.379 New service lines not in use.

Each service line that is not placed in service upon completion of installation must comply with one of the following until the customer is supplied with gas:

- (a) The valve that is closed to prevent the flow of gas to the customer must be provided with a locking device or other means designed to prevent the opening of the valve by persons other than those authorized by the operator.
- (b) A mechanical device or fitting that will prevent the flow of gas must be installed in the service line or in the meter assembly.
- (c) The customer's piping must be physically disconnected from the gas supply and the open pipe ends sealed.

Subpart I-Requirements for Corrosion Control

192.451 Scope.

- (a) This subpart prescribes minimum requirements for the protection of metallic pipelines from external, internal, and atmospheric corrosion.
- (b) Notwithstanding the deadlines for compliance in this subpart, the corrosion control requirements of this subpart do not apply to offshore gathering lines until August 1, 1977.

192.452 Applicability to converted pipelines.

Notwithstanding the date the pipeline was installed or any earlier deadlines for compliance, each pipeline which qualifies for use under this part in accordance with 192.14 must meet the requirements of this subpart specifically applicable to pipelines installed before August 1, 1971, and all other applicable requirements within 1 year after the pipeline is readied for service. However, the requirements of this subpart specifically applicable to pipelines installed after July 31, 1971, apply if the pipeline substantially meets those requirements before it is readied for service or it is a segment which is replaced, relocated, or substantially altered.

192,453 General.

Each operator shall establish procedures to implement the requirements of this subpart. These procedures, including those for the design, installation, operation and maintenance of cathodic protection systems, must be carried out by, or under the direction of, a person qualified by experience and training in pipeline corrosion control methods.

192.455 External corrosion control: buried or submerged pipelines installed after July 31, 1971.

- (a) Except as provided in paragraphs (b), (c), and (f) of this section, each buried or submerged pipeline installed after July 31, 1971, must be protected against external corrosion, including the following:
- (1) It must have an external protective coating meeting the requirements of 192.46.
- (2) It must have a cathodic protection system designed to protect the pipeline in its entirety in accordance with this subpart, installed and placed in operation within one year after completion of construction.
- (b) An operator need not comply with paragraph (a) of this section, if the operator can demonstrate by tests, investigation, or experience in the area of application, including, as a minimum, soil resistivity measurements and tests for corrosion, accelerating bacteria, that a corrosive environment does not exist. However, within 6 months after an installation made pursuant to the preceding sentence, the operator shall conduct tests, including pipe-to-soil potential measurements with respect to either a continuous reference electrode, or an electrode using close spacing, not to exceed 20 feet, and soil resistivity measurements at potential profile peak locations, to adequately evaluate the potential profile along the entire pipeline. If the tests made indicate that a corrosive condition exists, the pipeline must be cathodically protected in accordance with paragraph (a) (2) of this section.

- (c) An operator need not comply with paragraph (a) of this section, if the operator can demonstrate by tests, investigation, or experience that—
 - (1) For a copper pipeline, a corrosive environment does not exist; or
- (2) For a temporary pipeline with an operating period of service not to exceed 5 years beyond installation, corrosion during the 5-year period of service of the pipeline will not be detrimental to public safety.
- (d) Notwithstanding the provisions of paragraph (b) or (c) of this section, if a pipeline is externally coated, it must be cathodically protected in accordance with paragraph (a) (2) of this section.
- (e) Aluminum may not be installed in a buried or submerged pipeline if that aluminum is exposed to an environment with a natural pH in excess of 8, unless tests or experience indicate its suitability in the particular environment involved.
- (f) This section does not apply to electrically isolated, metal alloy fittings in plastic pipelines if —
- (1) For the size fitting to be used, an operator can show by tests, investigation, or experience in the area of application that adequate corrosion control is provided by alloyage;
- (2) The fitting is designed to prevent leakage caused by localized corrosion pitting; and
 - (3) A means is provided for identifying the location of the fitting.
- 192.457 External corrosion control: buried or submerged pipelines installed before August 1, 1971.
- (a) Except for buried piping at compressor, regulator, and measuring stations, each buried or submerged transmission line installed before August 1, 1971, that has an effective external coating must, not later than August 1, 1974, be cathodically protected along the entire area that is effectively coated, in accordance with this subpart. For the purposes of this subpart, a pipeline does not have an effective external coating if its cathodic protection current requirements are substantially the same as if it were bare. The operator shall make tests to determine the cathodic protection current requirements.
- (b) Except for cast iron or ductile iron, each of the following buried or submerged pipelines installed before August 1, 1971, must, not later than August 1, 1976, be cathodically protected in accordance with this subpart in areas in which active corrosion is found:
 - (1) Bare or ineffectively coated transmission lines.
- (2) Bare or coated pipes at compressor, regulator, and measuring stations.
- (3) Bare or coated distribution lines. The operator shall determine the areas of of active corrosion by electrical survey, or where electrical survey is impractical, by the study of corrosion and leak history records, by leak detection survey, or by other means.
- (c) For the purpose of this subpart, active corrosion means continuing corrosion which, unless controlled, could result in a condition that is detrimental to public safety.

PSC 192.457 (d) Notwithstanding the provisions of 192.457 (b) (regarding active corrosion), effectively coated steel distribution pipelines, except for those portions including services and short sections that because of their nature and installation make cathodic protection impractical and uneconomical, must, not later than August 1, 1975, be cathodically protected along the entire area that is effectively coated in accordance with this subpart.

192.459 External corrosion control: examination of buried pipeline when exposed.

Whenever an operator has knowledge that any portion of a buried pipeline is exposed, the exposed portion must be examined for evidence of external corrosion if the pipe is bare, or if the coating is deteriorated. If external corrosion is found, remedial action must be taken to the extent required by 192.483 and the applicable paragraphs of 192.485, 192.487, or 192.489.

192.461 External corrosion control: protective coating.

- (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control must—
 - (1) Be applied on a properly prepared surface;
- (2) Have sufficient adhesion to the metal surface to effectively resist underfilm migration of moisture;
 - (3) Be sufficiently ductile to resist cracking;
- (4) Have sufficient strength to resist damage due to handling and soil stress; and
- (5) Have properties compatible with any supplemental cathodic protection.
- (b) Each external protective coating which is an electrically insulating type must also have low moisture absorption and high electrical resistance.
- (c) Each external protective coating must be inspected just prior to lowering the pipe into the ditch and backfiling, and any damage detrimental to effective corrosion control must be repaired.
- (d) Each external protective coating must be protected from damage resulting from adverse ditch conditions or damage from supporting blocks.
- (e) If coated pipe is installed by boring, driving, or other similar method, precautions must be taken to minimize damage to the coating during installation.

192.463 External corrosion control: cathodic protection.

(a) Each cathodic protection system required by this subpart must provide a level of cathodic protection that complies with one or more of the applicable criteria contained in Appendix D of this subpart. If none of these criteria is applicable, the cathodic protection system must provide a level of cathodic protection at least equal to that provided by compliance with one or more of these criteria.

- (b) If amphoteric metals are included in a buried or submerged pipeline containing a metal of different anodic potential—
- (1) The amphoteric metals must be electrically isolated from the remainder of the pipeline and cathodically protected; or
- (2) The entire buried or submerged pipeline must be cathodically protected at a cathodic potential that meets the requirements of Appendix D of this part for amphoteric metals.
- (c) The amount of cathodic protection must be controlled so as not to damage the protective coating or the pipe.

192.465 External corrosion control: monitoring.

- (a) Each pipeline that is under cathodic protection must be tested at least once each calendar year, but with intervals not exceeding 15 months, to determine whether the cathodic protection meets the requirements of § 192.463. However, if tests at those intervals are impractical for separately protected service lines or short sections of protected mains, not in excess of 100 feet, these service lines and mains may be surveyed on a sampling basis. At least 10 percent of these protected structures, distributed over the entire system, must be surveyed each calendar year, with a different 10 percent checked each subsequent year, so that the entire system is tested in each 10-year period.
- (b) At intervals not exceeding 2 months, each cathodic protection rectifier or other impressed current power source must be inspected to ensure that it is operating.
- (c) At intervals not exceeding 2 months, each reverse current switch, each diode, and each interference bond whose failure would jeopardize structure protection, must be electrically checked for proper performance. Each other interference bond must be checked at least once each calendar year, but with intervals not exceeding 15 months.
- (d) Each operator shall take prompt remedial action to correct any deficiencies indicated by the monitoring.
- (e) After the initial evaluation required by paragraphs (b) and (c) of 192.455 and paragraph (b) of 192.457, each operator shall, at intervals not exceeding 3 years, reevaluate its unprotected pipelines and cathodically protect them in accordance with this subpart in areas in which active corrosion is found. The operator shall determine the areas of active corrosion by electrical survey, or where electrical survey is impractical, by the study of corrosion and leak history records, by leak detection survey, or by other means.

192.467 External corrosion control: electrical isolation.

- (a) Each buried or submerged pipeline must be electrically isolated from other underground metallic structures, unless the pipeline and the other structures are electrically interconnected and cathodically protected as a single unit.
- (b) An insulating device must be installed where electrical isolation of a portion of a pipeline is necessary to facilitate the application of corrosion control.
- (c) Except for unprotected copper inserted in ferrous pipe, each pipeline must be electrically isolated from metallic casings that are a part of

the underground system. However, if isolation is not achieved because it is impractical, other measures must be taken to minimize corrosion of the pipeline inside the casing.

- (d) Inspection and electrical tests must be made to assure that electrical isolation is adequate.
- (e) An insulating device may not be installed in an area where a combustible atmosphere is anticipated unless precautions are taken to prevent arcing.
- (f) Where a pipeline is located in close proximity to electrical transmission tower footings, ground cables or counterpoise, or in other areas where fault currents or unusual risk of lightning may be anticipated, it must be provided with protection against damage due to fault currents or lightning, and protective measures must also be taken at insulating devices.

192.469 External corrosion control: test stations.

Each pipeline under cathodic protection required by this subpart must have sufficient test stations or other contact points for electrical measurements to determine the adequacy of cathodic protection.

192.471 External corrosion control: test leads.

- (a) Each test lead wire must be connected to the pipeline so as to remain mechanically secure and electrically conductive.
- (b) Each test lead wire must be attached to the pipeline so as to minimize stress concentration on the pipe.
- (c) Each bared test lead wire and bared metallic area at point of connection to the pipeline must be coated with an electrical insulating material compatible with the pipe coating and the insulation on the wire.

192.473 External corrosion control: interference currents.

- (a) After July 31, 1973, each operator whose pipeline system is subjected to stray currents shall have in effect a continuing program to minimize the detrimental effects of such currents.
- (b) Each impressed current type cathodic protection system or galvanic anode system must be designed and installed so as to minimize any adverse effects on existing adjacent underground metallic structures.

192.475 Internal corrosion control: general.

- (a) After July 31, 1972, corrosive gas may not be transported by pipeline, unless the corrosive effect of the gas on the pipeline has been investigated and steps have been taken to minimize internal corrosion.
- (b) Whenever any pipe is removed from a pipeline for any reason, the internal surface must be inspected for evidence of corrosion. If internal corrosion is found—
- (1) The adjacent pipe must be investigated to determine the extent of internal corrosion;
- (2) Replacement must be made to the extent required by the applicable paragraphs of 192.485, 192.487 or 192.489; and
 - (3) Steps must be taken to minimize the internal corrosion.

(c) Gas containing more than 0.1 grain of hydrogen sulfide per 100 standard cubic feet may not be stored in pipe-type or bottle-type holders.

192.477 Internal corrosion control: monitoring.

If corrosive gas is being transported, coupons or other suitable means must be used to determine the effectiveness of the steps taken to minimize internal corrosion. After July 31, 1972, each coupon or other means of monitoring internal corrosion must be checked at intervals not exceeding 6 months.

192.479 Atmospheric corrosion control: general.

- (a) Pipelines installed after July 31, 1971. Each aboveground pipeline or portion of a pipeline installed after July 31, 1971 that is exposed to the atmosphere must be cleaned and either coated or jacketed with a material suitable for the prevention of atmospheric corrosion. An operator need not comply with this paragraph, if the operator can demonstrate by test, investigation, or experience in the area of application, that a corrosive atmosphere does not exist.
- (b) Pipelines installed before August 1, 1971. Not later than August 1, 1974, each operator having an aboveground pipeline or portion of a pipeline installed before August 1, 1971 that is exposed to the atmosphere, shall—
 - (1) Determine the areas of atmospheric corrosion on the pipeline;
- (2) If atmospheric corrosion is found, take remedial measures to the extent required by the applicable paragraphs of 192.485, 192.487, or 192.489; and
- (3) Clean and either coat or jacket the areas of atmospheric corrosion on the pipeline with a material suitable for the prevention of atmospheric corrosion.

§ 192.481 Atmospheric corrosion control: monitoring.

After meeting the requirements of § \$ 192.479 (a) and (b), each operator shall, at intervals not exceeding 3 years for onshore pipelines and 1 year for offshore pipelines, reevaluate each pipeline that is exposed to the atmosphere and take remedial action whenever necessary to maintain protection against atmospheric corrosion.

192.483 Remedial measures: general.

- (a) Each segment of metallic pipe that replaces pipe removed from a buried or submerged pipeline because of external corrosion must have a properly prepared surface and must be provided with an external protective coating that meets the requirements of 192.461.
- (b) Each segment of metallic pipe that replaces pipe removed from a buried or submerged pipeline because of external corrosion must be cathodically protected in accordance with this subpart.
- (c) Except for cast iron or ductile iron pipe, each segment of buried or submerged pipe that is required to be repaired because of external corrosion must be cathodically protected in accordance with this subpart.

192.485 Remedial measures: transmission lines.

- (a) General corrosion. Each segment of transmission line pipe with general corrosion and with a remaining wall thickness less than that required for the maximum allowable operating pressure of the pipeline, must be replaced or the operating pressure reduced commensurate with the actual remaining wall thickness. However, if the area of general corrosion is small, the corroded pipe may be repaired. Corrosion pitting so closely grouped as to affect the overall strength of the pipe is considered general corrosion for the purpose of this paragraph.
- (b) Localized corrosion pitting. Each segment of transmission line pipe with localized corrosion pitting to a degree where leakage might result must be replaced or repaired, or the operating pressure must be reduced commensurate with the strength of the pipe, based on the actual remaining wall thickness in the pits.

192.487 Remedial measures: distribution lines other than cast iron or ductile iron lines.

- (a) General corrosion. Except for cast iron or ductile iron pipe, each segment of generally corroded distribution line pipe with a remaining wall thickness less than that required for the maximum allowable operating pressure of the pipeline, or a remaining wall thickness less than 30 percent of the nominal wall thickness, must be replaced. However, if the area of general corrosion is small, the corroded pipe may be repaired. Corrosion pitting so closely grouped as to affect the overall strength of the pipe is considered general corrosion for the purpose of the paragraph.
- (b) Localized corrosion pitting. Except for cast iron or ductile iron pipe, each segment of distribution line pipe with localized corrosion pitting to a degree where leakage might result must be replaced or repaired.

192.489 Remedial measures: cast iron and ductile iron pipel

(a) General graphitization. Each segment of cast iron ox iron pipe on which general graphitization is found to a degree where a fracture or any leakage might result, must be replaced.

(b) Localized graphitization. Each segment of cast iron or iron pipe on which localized graphitization is found to a degree where any leakage might result, must be replaced or repaired, or sealed by internal sealing methods adequate to prevent or arrest a representation by leakage.

192,491 Corrosion control records.

(a) After July 31, 1972, each operator shall maintain records or maps to show the location of cathodically protected piping, anodes athodic protection facilities, other than unrecorded galvanic anodes installed before August 1, 1971, and neighboring structures bonded to the cathodic protection system.

(b) Each of the following records must be retained for as long as

the pipeline remains in service:

(1) Each record or map required by paragraph (a) of this ection. (2) Records of each test, survey, or inspection required by the section. part, in sufficient detail to demonstrate the adequacy of corresion control measures or that a corrosive condition does not exist.

Subpart J—Test Requirements

192,501 Scope.

This subpart prescribes minimum leak-test and strength-test requirements for pipelines.

192.503 General requirements.

(a) No person may operate a new segment of pipeline, or return to service a segment of pipeline that has been relocated or replaced,

(1) It has been tested in accordance with this subpart to substantiate the proposed maximum allowable operating pressure; and

(2) Each potentially hazardous leak has been located and elimi-

nated.

tea. (b) The test medium must be liquid, air, natural gas, or $in_{e_{rt}}$ gas that is-

at 18— (1) Compatible with the material of which the pipeline $_{
m i_{8}}$ constructed:

(2) Relatively free of sedimentary materials; and

(3) Except for natural gas, nonflammable.

(c) Except as provided in 192.505 (a), if air, natural gas, or inert gas is used as the test medium, the following maximum hoop stress limitations apply:

Class location	Maximum hoop stress allowed percentage of SMY_S^{o}	
	Natural gas	Air or inert
	80 30 30 30	80 75 50 40

- (d) Each weld used to tie-in a test segment of pipeline is excepted from the test requirements of this subpart.
- 192.505 Strength test requirements for steel pipeline to operate at a hoop stress of 30 percent or more of SMYS.
- (a) Except for service lines, each segment of a steel pipeline that is to operate at a hoop stress of 30% or more of SMYS must be strength tested in accordance with this section to substantiate the proposed maximum allowable operating pressure. In addition, in a Class 1 or Class 2 location, if there is a building intended for human occupancy within 300 feet of a pipeline, a hydrostatic test must be conducted to a test pressure of at least 125% of maximum operating pressure on that segment of the pipeline within 300 feet of such a building, but in no event may the test section be less than 600 feet unless the length of the newly installed or relocated pipe is less than 600 feet. However, if the buildings are evacuated while the hoop stress exceeds 50% of SMYS, air or inert gas may be used as the test medium.
- (b) In a Class 1 or Class 2 location, each compressor station, regulator station, and measuring station, must be tested to at least Class 3 location test requirements.
- (c) Except as provided in paragraph (e) of this section, the strength test must be conducted by maintaining the pressure at or above the test pressure for at least 8 hours.
- (d) If a component other than pipe is the only item being replaced or added to a pipeline, a strength test after installation is not required, if the manufacturer of the component certifies that—
- (1) The component was tested to at least the pressure required for the pipeline to which it is being added; or
- (2) The component was manufactured under a quality control system that ensures that each item manufactured is at least equal in strength to a prototype and that the prototype was tested to at least the pressure required for the pipeline to which it is being added.
- (e) For fabricated units and short sections of pipe, for which a post installation test is impractical, a preinstallation strength test must be conducted by maintaining the pressure at or above the test pressure for at least 4 hours.
- PSC 192.505 (f) Except in freezing weather or when water is not available, pipelines or mains larger than 6 inches in diameter, installed in class locations 1, 2, or 3, shall be hydrostatically tested in place to at least 90% of the specified minimum yield strength.
- 192.507 Test requirements for pipelines to operate at a hoop stress less than 30% of SMYS and above 100 p.s.i.g.

Except for service lines and plastic pipelines, each segment of a pipeline that is to be operated at a hoop stress less than 30% of SMYS and above 100 p.s.i.g. must be tested in accordance with the following:

- (a) The pipeline operator must use a test procedure that will ensure discovery of all potentially hazardous leaks in the segments being tested.
- (b) If, during the test, the segment is to be stressed to 20% or more of SMYS and natural gas, inert gas, or air is the test medium—
 - (1) A leak test must be made at a pressure between 100 p.s.i.g.