te verse ella participation de la servicio de la se Altre el servicio de la servicio de l

and the second second of the second second

ANALYTICAL TEST METHODS AND PROCEDURES

NR 219.01	Purpose and the second second	NR	219.05	Approval of alternate test pro- cedures
NR 219.02 NR 219.03	Applicability Definitions	NR	219.06	cedures List of approved test proce-
	Application for alternate test		a de dre	dures
	procedures			 Specific and the second se

NR 219.01 Purpose. The purpose of this chapter is to establish analytical test methods and procedures applicable to effluent limitations for discharges from point sources as authorized by s. 147.04 (5), Stats.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76.

NR 219.02 Applicability. The procedures prescribed herein shall, except as provided in s. NR 219.05, be used in the determination of concentrations and quantities of pollutant parameters as required for:

(1) An application submitted to the department for a permit under ch. 147, Stats.

(2) Reports required to be submitted by dischargers in accordance with the conditions of issued permits.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76.

i,

NR 219.03 Definitions. As used in this chapter:

(1) Standard Methods - means "Standard Methods for the Examination of Water and Waste Water," 14th Edition, 1976. This publication is available from the American Public Health Association, 1015 18th Street NW, Washington, D.C. 20036.

(2) ASTM - means "Annual Book of Standards, Part 31, Water, 1975." This publication is available from the American Society for Testing and Materials, 1916 Race Street, Philadelphia, Pennsylvania 19103.

(3) EPA methods - means "Methods for Chemical Analysis of Water and Waste, 1974", Methods Development and Quality Assurance Research Laboratory, National Environmental Research Center, Cincinnati, Ohio 45268; U.S. Environmental Protection Agency, Office of Technology Transfer, Industrial Environmental Research Laboratory, Cincinnati, Ohio 45268. This publication is available from the Office of Technology Transfer.

(4) Regional Administrator - the term "Regional Administrator" means the Regional Administrator of Region V, U.S. Environmental Protection Agency.

(4m) Copies of the publications identified above, and of the publications referred to in footnotes 1 through 3, 5 through 10, 12, 13, 15 through 17, and 22 through 24 of s. NR 219.06 are available for inspec-Register August 1983 No 332

Register, August, 1983, No. 332 Environmental Protection

soft group and softw

tion at the offices of the department of natural resources, the secretary of state and the revisor of statutes.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76; am. (1), (2), (3) and (4m), Register, January, 1978, No. 265, eff. 2-1-78.

NR 219.04 Application for alternate test procedures. (1) Any person may apply to the regional administrator for approval of an alternate test procedure for a specific discharge. Such application shall be made in the following manner:

(

(a) The applicant shall submit an application to the regional administrator through the department.

(b) The application for an alternate test procedure shall be made by letter in triplicate, and

1. Provide the name and address of the responsible person or firm making the discharge (if not the applicant), the number of the existing or pending permit, the name of the issuing agency, and the discharge serial number,

2. Identify the pollutant or parameter for which approval of an alternate testing procedure is being requested,

3. Provide justification for using testing procedures other than those specified in ch. NR 219, and

4. Provide a detailed description of the proposed alternate test procedure, together with references to published studies on the applicability of the alternate test procedure to the effluents in question.

(2) Any person may apply to the director, environmental monitoring and support laboratory, Cincinnati, Ohio 45268 for approval of an alternate test procedure for nationwide use. Such application shall be made in the following manner:

(a) The application for an alternate test procedure shall be made by letter, in triplicate, and

1. Provide the name and address of the responsible person or firm making the request,

2. Identify the pollutant(s) or parameter(s) for which nationwide approval of an alternate testing procedure is being requested,

3. Provide a detailed description of the proposed alternate test procedure, together with references to published or other studies confirming the general applicability of the alternate test procedure to the pollutant(s) or parameter(s) in wastewater from representative or specified industrial or other categories, and

4. Provide comparability data for the performance of the proposed alternate test procedure compared to the approved test procedures.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76; r. and recr. January, 1978, No. 265, eff. 2-1-78.

NR 219.05 Approval of alternate test procedures. (1) The regional administrator has final responsibility for approval of any alternate test procedure proposed by responsible person or firm making the discharge.

(2) Within 30 days of receipt of an application, the department will forward such application proposed by responsible person or firm making the discharge, together with its recommendations, to the regional administrator. Where the director recommends rejection of the application for scientific and technical reasons which the director provides, the regional administrator shall deny the application.

(3) Within 90 days of the receipt of an application for an alternate test procedure proposed by responsible person or firm making the discharge, the regional administrator will notify the applicant and the department agency of approval or rejection, or shall specify the additional information which is required to determine whether to approve the proposed test procedure.

(4) Within 90 days of the receipt by the director of the environmental monitoring and support laboratory, Cincinnati, of an application for an alternate test procedure for nationwide use, the director of the environmental monitoring and support laboratory, Cincinnati, shall notify the applicant of his/her recommendation to the administrator to approve or reject the application or shall specify additional information which is required to determine whether to approve the proposed test procedure. After such notification, an alternate method determined by the administrator to satisfy the applicable requirements of this chapter shall be approved for nationwide use: alternate test procedures determined by the administrator not to meet the requirements of 40 CFR part 136 shall be rejected. Notice of these determinations shall be submitted for publication in the federal register not later than 15 days after such notification and determination is made.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76; am. (1) to (3) and cr. (4), January, 1978, No. 265, eff. 2-1-78.

NR 219

				References (page numbers)				
	Parameter and Units	Method	EPA Methods	Standard Methods	ASTM	ÚSGS ² Methods	Other	
Gener	al Parameters							
1.	Acidity, as CaCO ₃ , mg/l	Electrometric end point (pH of 8.2) or phenolphthalein end point.	. 1	273(4d)	116	40	³ (607)	
2.	Alkalinity as CaCO3, mg/l	Electrometric titration (to pH 4.5) man- ual or automated, or equivalent auto- mated methods.	3 5	278	111	41	³ (607)	
3.	Ammonia (as N), mg/1	Manual distillation ⁴ (at pH 9.5), fol- lowed by nesslerization, titration elec- trode, automated phenolate.	159 165	410 412	237	116	³ (614)	
	Den sidin e se s'il		168	616				
4. 5.	Benzidine, mg/1 Biochemical oxygen demand, five- day (BOD ₅), mg/1	Oxidation - colorimetric. ⁵ Winkler (Azide modification) or eletrode.		543		⁶ (50)	7(17)	
6. 7.	Bromide, mg/1 Chemical oxygen demand (COD), mg/1	Titrimetric, iodine-iodate. Dichromate reflux.	14 20	550	323 472	58 124	³ (610) ⁷ (17)	
8.	Chloride, mg/l	Silver nitrate; mercuric nitrate; auto- mated colorimetric-ferricyanide.	29 31	303 304 613	267 265	⁸ (46)	³ (615)	
9.	Chlorinated organic compounds (except pesticides), mg/l	Gas chromatography. ⁹		*-*		(***)		
10.	Chlorine-total residual, mg/1	Iodometric titration, amperometric or starch-iodine endpoint; DPD colori- metric or titrimetric methods (these last two methods are interim methods	35	318 322 332 329	278			
11.	Color, platinum cobalt units or dominant wavelength, hue, lu- minance, purity	pending laboratory testing). Colorimetric; spectrophotometric; or ADMI procedure. ¹⁰	36 89	64 66		82		
12.	Cyanide, total, ¹¹ mg/1	Distillation followed by silver nitrate ti- tration or pyridine pyrazolone (or bar- bituric acid) colorimetric.	40	361	503	85	⁷ (22)	

NR 219.06 - LIST OF APPROVED TEST PROCEDURES¹

.

.

.

127 NR 219

1

.

			EPA	Refere Standard	mbers) ÚSGS ²	10.5 ²		
	Parameter and Units	Method	Methods	Methods	ASTM	Methods	Other	
13.	Cyanide amenable to chlorina- tion, mg/l	do:	49	376	505			
14.	Dissolved oxygen, mg/1	Winkler (Azide modification) or electrode method.	51 56	443 450	368	126	³ (609)	
15.	Fluoride, mg/l	Distillation ⁴ followed by ion electrode; SPADNS: or automated complexone.	65	389 391	307	93		
		of highly, of automated complexitie.	59 61	393	305	20		
16.	Hardness, total, as $CaCO_3$, mg/1	EDTA titration; automated colorimetric; or atomic absorption (sum of Ca and Mg as their respective carbonates).	68 70	614 202	161	94	³ (617),	
17. 18.	Hydrogen ion (pH), pH units	Electrometric measurement.	239	460	178	129	³ (606)	
18.	Kjeldahl nitrogen (as N), mg/l	Digestion and distillation followed by nesslerization, titration or electrode; automated digestion automated phenolate.	175 165 182	437		122	³ (612)	
19.	Nitrate (as N), mg/l	Cadmium reduction; brucine sulfate; au- tomated cadmium or hydrazine reduction. ¹³	201 197	423 427	358	119	³ (614)- ⁷ (28)	
			207	620			(-+)	
20.	Nitrite (as N), mg/l	Manual or automated colorimetric (Diazotization)	215	434		121		
21.	Oil and grease, mg/1	Liquid-liquid extraction with trichloro- trifluoro-ethane-gravimetric.	229	515				
22.	Organic carbon, total (TOC) mg/1	Combustion-infrared method, 14	236	532	467	¹⁵ (4)		
23.	Organic nitrogen (as N), mg/l	Kjeldahl nitrogen minus ammonia nitrogen.	175,159	437		122	³ (612,614)	
24.	Orthophosphate (as P), mg/1	Manual or automated ascorbic acid reduction.	249 256	481 624	384	131	³ (621)	
25. 26.	Pentachlorophenol, mg/1 Pesticides, mg/1	Gas chromatography. ⁹	200		500	15/04)		
20. 27.	Phenols, mg/1	do ⁹ Distillation followed by colorimetric	241	555 574	529 545	¹⁵ (24)		
28.	Phosphorus (elemental), mg/l	(4AAP). Gas chromatography. ¹⁶						

Register, August, 1983, No. 332 Environmental Protection

_

NR 219

.

128

		References (page numbers) EPA Standard USGS ²					
	Parameter and Units	Method	Methods	Methods	ASTM	Methods	Other
29.	Phosphorus, total (as P), mg/1	Persulfate digestion followed by manual or automated ascorbic acid reduction.	249 256	476,481 624	384	133	³ (621)
30.	Specific conductance, micromhos per centimeter at 25°C	Wheatstone bridge conductimetry.	275	71	120	148	³ (606)
31.	Sulfate (as SO ₄), mg/1	Gravimetric; turbidimetric; or automated colorimetric (barium chloranilate).	277 279	493 496	424 425		³ (624) ³ (623)
32.	Sulfide (as S), mg/l	Titrimetric-iodine for levels greater than 1 mg/1; methylene blue photometric.	284	505 503		154	
33. 34. 35.	Sulfite (as SO3), mg/1 Surfactants, mg/1 Temperature, degrees C	Titrimetric, iodine-iodate. Colorimetric (methylene blue). Calibrated glass or electrometric	285 157 286	508 600 125	435 494	¹⁵ (11) ¹⁷ (31)	
36.	Turbidity, NTU	thermometer. Nephelometric.	295	132	223	156	
Bacter							
37.	Coliform (fecal) ¹⁸ , number per 100 ml	MPN; ¹⁹ membrane filter.		922 937		⁶ (45)	
38.	Coliform (fecal) ¹⁸ , in presence of chlorine, number per 100 ml	do ¹⁹ , ²⁰		922 928,937			÷.
39.	Coliform (total) ¹⁸ , number per 100 ml	do ¹⁹		916 928		⁶ (35)	
40.	Coliform (total) ¹⁸ , in presence of chlorine, number per 100 ml	MPN; ¹⁹ membrane filter with enrichment.		916 933		,	
41.	chlorine, number per 100 ml Fecal streptococci, ¹⁸ number per 100 ml.	MPN, ¹⁹ membrane filter; plate count.		943 944 947		⁶ (50)	
Metals	21		•				
42.	Aluminum, total, mg/l	Digestion ²² followed by atomic absorp- tion ²³ or by colorimetric (Eriochrome Cyanide R).	92	152 171		⁸ (19)	
43.	Antimony, total, mg/1	Digestion ²² followed by atomic absorption ²³ .	94				

Register, August, 1983, No. 332 Environmental Protection

 \sim

.

.

129 NR 219

				Refere	nces (page nu	mbers)		
	• •		EPA	Standard	v b	ÚSGS ²		
	Parameter and Units	Method	Methods	Methods	ASTM	Methods	Other	
44.	Arsenic, total, mg/1	Digestion followed by silver		285				
	······································	diethyldithio-carbamate; or atomic absorption. ^{23,24}	9 95	283 159		$\frac{8(31)}{8(37)}$		
	D T (()	apporption.","	97	152		(01)	52	
45.	Barium, total, mg/l	Digestion ²² followed by atomic absorption. ²³					24	
46.	Beryllium, total, mg/l	Digestion ²² followed by atomic absorp-	99	152		• 53		
		tion ²² or by colorimetric (aluminon)		177				
47.	Boron, total, mg/l	Colorimetric (Curcumin).	13	287			1/010	
48.	Cadmium, total, mg/1	Digestion ²² followed by atomic absorp- tion ²³ or by colorimetric (Dithizone).	101	148	345	62	³ (619)- ⁷ (37)	
				182				
49.	Calcium, total, mg/l	Digestion ²² followed by atomic absorp-	103	148	345	66		
43.	Galciulii, totai, iiig/1	tion; or EDTA titration.		189				
50.	Chromium VI, mg/1	Extraction and atomic absorption; colori-	89,105			76		
		metric (Diphenylcarbazide).		192		75		
51.	Chromium, total, mg/l	Digestion ²² followed by atomic absorp-	105	148	345	78	³ (619)	
•	010 010 010 010, 100, 100, 1	tion ²³ or by colorimetric (Diphenylcarbazide).		192	286	77		
52.	Cobalt, total, mg/1	Digestion ²² followed by atomic	107	148	345	80	⁷ (37)	
02.	Cobart, total, mg/1	absorption.23						
53.	Copper, total, mg/1	Digestion ²² followed by atomic absorp-	108	148	345	83	³ (619)-	
		tion ²³ or by colorimetric (Neocuproine).		196	243		7(37)	
54.	Gold, total, mg/l	Digestion ²² followed by atomic						
		absorption. ¹²						
55.	Iridium, total, mg/l	Digestion ²² followed by atomic						
		absorption. ¹²	110	140	045	100	³ (619)	
56.	Iron, total, mg/1	Digestion ²² followed by atomic absorp- tion ²³ or by colorimetric	110	148 208	345 326	102	(013)	
		(Phenanthroline).		200	000			
57.	Lead, total, mg/l	Digestion ²² followed by atomic absorp-	112	148	345	105	³ (619)	
	,,,	tion ²³ or by colorimetric (Dithizone).		215			• • • •	
58.	Magnesium, total, mg/1	Digestion ²² followed by atomic absorp-	114	148	345	109	³ (619)	
		tion; or gravimetric.		221		•		

Register, August, 1983, No. 332 Environmental Protection

· · · · ·

1

NR 219

130

			References (page numbers)					
	Parameter and Units	Method	EPA Methods	Standard Methods	ASTM	ÚSGS ² Methods	Other	
59.	Manganese, total, mg/l	Digestion ²² followed by atomic absorp- tion ²³ or by colorimetric (Persulfate or periodate).	116	148 225,227	345	111	³ (619)	
60. 61.	Mercury, total, mg/l Molybdenum, total, mg/l	Flameless atomic absorption. Digestion ²² followed by atomic absorption. ²³	118 139	156	338 350	*(51)		
62.	Nickel, total, mg/l	Digestion ²² followed by atomic absorp- tion ²³ or by colorimetric (Heptoxime).	141	148	345	115		
63.	Osmium, total, mg/l	Digestion ²² followed by atomic absorption ¹² .						
64.	Palladium, total, mg/l	Digestion ²² followed by atomic absorption ¹² .						
65,	Platinum, total, mg/I	Digestion ²² followed by atomic absorption ¹² .						
66.	Potassium, total, mg/1	Digestion ²² followed by atomic absorp- tion, colorimetric (Cobaltinitrite), or by flame photometric.	143	235 234	403	134	³ (620)	
67.	Rhodium, total, mg/l	Digestion ²² followed by atomic absorption. ¹²		204	400			
68.	Ruthenium, total, mg/1	Digestion ²² followed by atomic absorption. ¹²						
69.	Selenium, total, mg/1	Digestion ²² followed by atomic absorption, ¹² , ²⁴	145	159				
70.	Silica, dissolved, mg/1	0.45 micron filtration ²¹ followed by color- imetric (Molybdosilicate).	274	487	398	139		
71.	Silver, total ²⁵ , mg/l	Digestion ²² followed by atomic absorp- tion ²³ or by colorimetric (Dithizone).	146	148 243		142	³ (619)- ⁷ (37)	
72.	Sodium, total, mg/l	Digestion ²² followed by atomic absorp- tion or by flame photometric.	147	250	403	143	3(621)	
73.	Thallim, total, mg/1	Digestion ²² followed by atomic absorption. ²³	149					
74.	Tin, total, mg/l	Digestion ²² followed by atomic absorption. ²³	150			*(65)		
75.	Titanium, total, mg/l	Digestion ²³ followed by atomic absorption. ²³	151					

Register, August, 1983, No. 332 Environmental Protection

.

.

.

131 NR 219

1.122

	Parameter and Units	Method	EPA Methods	Refere Standard Methods	nces (page nu ASTM	nbers) USGS ² Methods	Other
76.	Vanadium, total. mg/l	Digestion ²² followed by atomic absorp-	153	152	441	8/07)	
77.	Zine, total, mg/1	tion ²³ or by colorimetric (Gallie acid). Digestion ²² followed by atomic absorp- tion ²³ or by colorimetric (Dithizone).	155	260 148 265	441 345	⁸ (67) 159	³ (619)- ⁷ (37)
Radio 78. 79. 80. 81. 82. 83.	ological Alpha, total, pCi/l Alpha, Counting Error, pCi/l Beta, total, pCi/l Beta, counting error, pCi/l Radium, total, pCi/l 226 Radium, pCi/l	Proportional or scintillation counter do Proportional counter. do do Scintillation counter.		648 648 648 648 661 667	591 594 601 606 661	,	^{8 26} (75+78) ⁸ (79) ^{8 26} (75+78) ⁸ (79) ⁸ (81)
Resid	ue						
84. 85. 86.	Total, mg/1 Total dissolved (filterable), mg/1 Total suspended (nonfilterable), mg/1	Gravimetric, 103 to 105°C. Glass fiber filtration, 180°C. Glass fiber filtration, 103 to 105°C.	270 266 2 6 8	91 92 94			
87. 88.	mg/l Settleable, ml/l or mg/l. Total volatile, mg/l	Volumetric or gravimetric. Gravimetric, 550°C.	272	95 95			

'Recommendation for sampling and preservation of samples according to parameter measured may be found in "Methods for Chemical Analysis of Water and Wastes, 1974'' U.S. Environmental Protection Agency, table 2, pp. vii-xii.

²All page references for USGS methods, unless otherwise noted, are to Brown, E., Skougstad, M.W., and Fishman, M.J., "Methods for Collection and Analysis of Water Samples for Dissolved Minerals and Gases," U.S. Geological Survey Techniques of Water-Resources Inv., book 5, ch. Al, (1970).

³EPA comparable method may be found on indicated page of "Official Methods of Analysis of the Association of Official Analytical Chemists" methods manual, 12th ed. (1975).

"Manual distillation is not required if comparability data on representative effluent samples are on company file to show that this preliminary distillation step is not necessary; however, manual distillation will be required to resolve any controversies.

⁵Adequately tested methods for benzidine are not available. Until approved methods are available, the following interim method can be used for the estimation of benzidine: "Method for Benzidine and its Salts in Wastewaters," available from Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268.

*Slack, K.V., and others, "Methods for Collection and Analysis of Aquatic Biological and Microbiological Samples," U.S. Geological Survey Techniques of Water-Resources Inv., book 5, ch. A4, (1973).

NR 219

132

⁷American National Standard on Photographic Processing Effluents, April 2, 1975. Available from NASI, 1430 Broadway, New York, New York 10018.

*Fishman, M.J. and Brown, Eugene, "Selected Methods of the U.S. Geological Survey for Analysis of Wastewaters," (1976) open-file report, 76-117.

⁹Procedures for pentachlorophenol, chlorinated organic compounds and pesticides can be obtained from the Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268.

¹⁰Color method (ADMI procedure) available from the Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268.

¹¹For samples suspected of having thiocyanate interference, magnesium chloride is used as the digestion catalyst. In the approved test procedure for cyanides, the recommended catalysts are replaced with 20 ml of a solution of 510 g/l magnesium chloride (MgC1.6H₂O). This substitution will eliminate thiocyanate interference for both total cyanide and cyanide amenable to chlorination measurements.

¹²Method available from the Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268.

¹³An authomated hydrazine reduction method is available from the Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268.

¹⁴A number of such systems manufactured by various companies are considered to be comparable in their performance. In addition, another technique, based on combustion-methane detection is also acceptable.

¹⁵Goerlitz, D., Brown, E., "Methods for Analysis of Organic Substances in Water," U.S. Geological Survey Techniques of Water-Resources Inv., book 5, ch. A3 (1972).

¹⁰Addison, R.F., and Ackman, R.G., "Direct Determination of Elemental Phosphorus by Gas-Liquid Chromatography," "Journal of Chromatography," vol. 47, No. 3, pp. 421-426, 1970.

¹⁷Stevens, H.H., Ficke, J.F., and Smoot, G.F., "Water Temperature-Influential Factors. Field Measurement and Data Presentation," U.S. Geological Survey Techniques of Water Resources Inv., book 1 (1975).

¹⁸The method used must be specified.

¹⁹The 5 tube MPN is used.

²⁰Since the membrane filter technique usually yields low and variable recovery from chlorinated wastewaters, the MPN method will be required to resolve any controversies.

 21 Dissolved metals are defined as those constituents which will pass through a 0.45 micron filter. A prefiltration is permissable to free the sample from larger suspended solids. Filter the sample as soon as practical after collection using the first 50 to 100 ml to rinse the filter flask. (Glass or plastic filtering apparatus are recommended to avoid possible contamination). Discard the portion used to rinse the flask and collect the required volume of filtrate. Acidify the filtrate with 1:1 redistilled HNO₃ to a pH of 2. Normally, 3 ml of (1:1) acid per liter should be sufficient to preserve the samples.

 22 For the determination of total metals the sample is not filtered before processing. Because vigorous digestion procedures may result in a loss of certain metals through precipitation, a less vigorous treatment is recommended as given on page 83 (4.1.4) of "Methods for Chemical Analysis of Water and Wastes" (1974). In those instances where a more vigorous digestion is desired, the procedure on page 82 (4.1.3) should be followed. For the measurement of the noble metal series (gold, iridium, osmium, palladium, platinum, rhodium and ruthenium), an aqua regia digestion is to be substituted as follows: Transfer a representative aligned of the beaker on a stream bath and evaporate to dryness. Cool the beaker

Register, August, 1983, No. 332 Environmental Protection

.....

NR 219

Sec. 2

133

and cautiously add a 5 ml portion of aqua regia. (Agua regia is prepared immediately before use by carefully adding 3 volumes of concentrated HCl to one volume of concentrated HNO₃). Cover the beaker with a watch glass and return to the steam bath. Continue heating the covered beaker for 50 minutes. Remove cover and evaporate to dryness. Cool and take up the residue in a small quantity of 1:1 HCl. Wash down the beaker and watch glass with distilled water and filter the sample to remove silicates and other insoluble material that could clog the atomizer. Adjust the volume to some predetermined volume based on the expected metal concentration. The sample is now ready for analysis.

 23 As the various furnace devices (flameless A.A.) are essentially atomic absorption techniques, they are considered to be approved test methods. Methods of standard addition are to be followed as noted in p. 78 of "Methods for Chemical Analysis of Water and Wastes," 1974.

²⁴See "Atomic Absorption Newsletter," vol. 13,75 (1974). Avaiable from Perkin-Elmer Corp., Main Ave., Norwalk, Conn. 06852.

²⁵Recommended methods for the analysis of silver in industrial wastewaters at concentrations of 1 mg/I and above are inadequate where silver exists as inorganic halide. Silver halides such as the bromide and chloride are relatively insoluble in reagents such as nitric acid but are readily soluble in an aqueous buffer of sodium thiosulfate and sodium hydroxide to a pH of 12. Therefore, for levels of silver above 1 mg/I, 20 ml of sample should be diluted to 100 ml by adding 40 ml each of 2M Na₂S₂O₂ and 2M NaOH. Standards should be prepared in the same manner. For levels of silver below 1 mg/I the recommended procedure is satisfactory.

²°The method found on page 75 measures only the dissolved portion while the method on page 78 measures only suspended. Therefore the two results must be added together to obtain "total."

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76; r. and recr. Register, January, 1978, No. 265, eff. 2-1-78.