Table 82.36-2
MINMUN SIZE OF STORM WATER HORIZONTAL DRAIN PIPING PAVED OR GRAVELED GROUND SURFACE AREAS

Pipe Diameters (in inches)	Maximum Surlace Areas (in square feet)			
	Pitch of Piping Per Foot			
	1/16 inch	$1 / 8$ inch	1/4 inch	1/2 inch
3	810	1,140	1,625	2,270
4	1,625	2,430	3,740	4,720
5	3,090	4,550	6,350	8,760
6	5,200	7,470	10,400	14,600
8	11,650	16,250	22,750	32,600
10	22,100	30,850	44,250	63,000
12	34,150	52,30:0	71,500	102,200
15	65,000	91,000	131,500	183, 000
18	107,000	152,000	210,800	321,000
21	195,000	224,000	321,000	468,000
24	234,000	336,000	478,000	682,000

Note: Divide square footage by 32.5 to obtain flow in gem.
Table 82.36-3
MINIMUM SIZF OF STORM WATER HORIZONTAL DRAIN PIPING SERVING
LAYNS, PARKS AND SIMILAR LAND SURFACES

PipeDiameters(ininches)	Maximum Surface Areas (in square feet)			
	Pitch of Piping Per Foot			
	1/16 inch	1/8 inch	1/4 inch	$1 / 2$ inch
3	2,600	3,640	5,200	7,280
4	5,200	7,800	11,960	16,080
5	9,880	13,560	20,280	28,080
6	16,640	23,920	33,280	46,800
8	37,280	52,0010	72,800	112,600
10	69,720	98,800	135,200	201,760
12	109,200	164,320	228,800	327,600
15	208,000	291,200	421,200	586,560
18	343,200	490,200	596,800	988,000
21	626,080	718,640	1,027,520	1,497,600
24	748,800	1,046,240	1,528,800	2,184,000

Note: Divide square footage by 104 to obtain flow in gpm.

Table 82.36-4
MAXIMUM CAPACITY OF STORM WATER horlzontal. Drain piping fiowing full

PipeDiameters(ininches)	Maximum Capacities in Gallons Per Minutes			
	Pitch of Piping Per Fool			
	1/16 inch	1/8 inch	1/4 inch	$1 / 2$ inch
3	25	35	50	70
4	50	75	- 115	145
5	$\therefore \quad 97$	140	- 195	270
6	160	230	320	450
8	- 355	500	700	1,000
10	680	950	1,300	1,940
12	1,050	1,580	2,200	3,150
15	2,000	2,800	4,050	6,640
18	3,300	4,675	6,700	9,500
21	6,020	6,910	9,880	14,400
24	7,200	10,060.	14,700	21,000

(b) Vertical conductors for storm water. 1. A vertical conductor for storm water shall not be smaller than the largest horizontal branch connected thereto.
2. Vertical conductors shall be sized in accordance with Table 82.36-5 or the diameter D , where

$$
\mathrm{D}=1.128 \sqrt{\frac{\mathrm{~A}}{\mathrm{X}}}
$$

Where, $\quad A=$ the area of the roof in square feet
$X=300$ square feet per square inch for a roof covered with gravel or slag and with a pitch not exceeding $1 / 4$ inch per foot; or
$=250$ square feet per square jnch for a roof covered with gravel or slag and with a pitch of greater than $1 / 4$ inch per foot; or
$=200$ square feet per square inch for a roof with a metal, tile, brick or slate covering and of any pitch.

Table 82.36-5
MINIMUM DIAMETER OF VERTICAL CONDUCTORS

${ }^{\text {rlype of Rool }}$	Maximum Roof Areas (in square feet)					
	Pipe Diameters (in inches)					
	21/2	3	4	5	6	8
Rools covered with gravel, slag, or similar material and with a pitch of $1 / 4^{*}$ per foot or less.	1,645	2,120	3,780	5,885	8,490	15,125
Rools covered with gravel, slag or similar material and with a pitch greater than $1 / 4^{=}$per foot.	1,220	1,770	3,150	4,905	7,076	12,600
Roofs covered with metal, tile, brick, slate or similar material and of any pitch.	975	1,415	2,520	3,925	5,660	10,080

Note: Divide square footage by 26 to obtain flow in gpm.
Register, January, 1992, No. 433

