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Thank you, Representative O’Connor and committee members, for convening today’s public
hearing on Assembly Bill (AB) 228. Wisconsin is succeeding—now—in attracting billions of
dollars in private investments from some of the biggest technology companies in the world. This
bill aims to reinforce that success.

Less than two years ago, the Legislature created a sales tax exemption for materials used to
construct, operate or renovate industrial-scale data centers—the physical locations where
computing and networking equipment reside to store and process the data that makes the Internet
work. Our goal was to attract some of the valuable private investment that was already gaining
momentum in other Midwestern states.

That policy decision is already bearing fruit. Two enormous data centers are under construction
already in Wisconsin (including one in the district that I represent); more are being planned. All
of these projects far exceed the minimum capital investment required to qualify for the tax
exemption, and it seems that the demand for these facilities in our nation and in our region will
only increase with time.

Current law provides sensible limits on local governments’ options to create tax incremental
districts (TIDs) to host economic development, including a cap on the total property value that
may be included within any municipality’s TIDs. But these data center projects dwarf most
other development projects. Increasingly, the Legislature has been asked to grant exceptions to
the “12 percent rule” that limits the creation of new TIDs; in all likelihood, the Legislature will
be asked every single time to waive the 12 percent rule when new opportunities arise for our
communities to attract one of these massive data center investments.

AB 228 proposes to waive the 12 percent rule—categorically, instead of amending the statute
one data center at a time—for the creation of any TID whose sole purpose is to support a
qualified data center. Under the bill, communities may compete to attract these lucrative projects
without worrying about whether the Legislature eventually will vote to waive the general 12
percent limit. Communities will not miss out on time-sensitive opportunities to land these
projects if the Legislature cannot act promptly enough to authorize an exception. And if a
community does attract a data center investment, its existence will not unduly prevent that
community from using tax incremental financing as usual for all other, routine development.

Thank you for your time and consideration of AB 228.
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Testimony on Assembly Bill 228

Thank you Chalrman O’Connor and members of the committee for hearing our
testlmony today. Last sessron the Leglslature took the step to welcome data
centers to our state by creatlng a sales tax exemption for materials used to
construct operate or renovate Iarge -scale facmt!es Thanks to this tax exemptlon
and Wisconsin belng a great state to operate and welcome business, we are
fortunate to have several of these data centers being built.

However as several of them are gettmg ready to break ground we are reahzmg
that their scope and cost far outsize our current tools for economic development.
Specifically, these projects far exceed the 12% cap on the value of a tax
incremental districts (TID). As more communities are welcommg these data
centers, bills are being drafted to exempt these data centers from the 12% cap.

While this limit on TID is well meaning, it didn’t anticipate these new investments.
Since data centers are already defined in statute for the sales tax exemptions, it
allows us to create a narrow exemption to the 12% rule for the entire state.
Assembly Bill 228 will allow for one bill to cover all of these data centers and
hopefuily welcome more in the future.

This is our opportunity to welcome this advanced technology to our communities
and push our economy into the next generation.

Thank you for considering this bill and we weilcome any questions you may have.
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Good afternoon members of the committee. My name is Abby Novinska Lois ‘and | am here \%“%?w nPEE,
express @& support for sustainable economic development that creates family-supporting jobs.
However, Imust also raise critical concerns regarding the environmental and community impacts
of data centers, particularly in light of the proposed legislation regarding tax incremental [T+ S“)

financing-districts for these facilities.

While data centers may sound like an enticing economic benefit, we are witnessing a growing
cautionary tale from communities that have welcomed these developments. The implications for
community health and the environment cannot be overlooked.

I'd like to share five main concerns:

First, let's address noise pollution. Data centers require constant cooling, which often involves
large fans that generate significant noise. While the noise levels may technically comply with
local ordinances, the constant hum can be disruptive and unexpected for nearby residents.
Prolonged exposure to noise pollution has been linked to health issues such as hypertension
and increased cortisol levels, which can have serious long-term effects on community
well-being.

Second, we must consider water demands. Data centers consume vast amounts of water for
cooling purposes. Communities are increasingly concerned about the chemicals that may
remain in the cooling water when it is discharged into local waterways. Not only does this raise
questions about the potential contamination of our water supply and the health risks associated
with it, but it-could ise impact water costs and overextraction at a time when clean and fresh
water is growing further out of reach for many Wisconsin families and buisnesses due to other
pollutants.

Third, we cannot ignore the direct air pollution associated with these facilities. Many data
centers are equipped with backup energy systems, including large diesel generators. For
instance, Microsoft has requested permits for over 220 large diesel generators across its
campuses in Wisconsin. Diesel exhaust is classified as a group 1 carcinogen and is known to
coritribute to heart and lung diseases, as well as cancer. This is particularly alarming in regions
like Racine and Kenosha, which are already struggling with poor air quality and high rates of
asthma-related asthma-related emergency visits and hospitalizations. With the recent upgrades
to serious nonattainment status for ozone pollution in these areas, the introduction of more data
centers could further compromise the health of an already vulnerable population.

Notably, this pollution can also limit economic opportunities for other businesses that may be
looking to expand in Wisconsin and grow into that area.

Fourth, we must address the energy burden that these data centers impose on local L
communities. The energy demands s of data Cen(ters are astronomical, with estimates for s%me reles s LA
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- centers larger than T pewegng 300-000-Fomes. These energy needs will fall on local utilities, and
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ultimately, on the residents of Wisconsin if new infrastructure is built. Many Wisconinites are
already upset and struggling from high energy costs that are rising every year and they should




not be subsidizing multi-billion corporations. This energy burden is a public health issue, with
many families already having to choose between rent, electricity bills, healthy foods, and
medicines. And the financial implications of meeting these demands will be felt for decades,
even if the data center or other industries change because of the way our utility rate system
operates.

And number five, let’'s consider the broader climate costs. The energy consumption, hesdt—
production—water-usager-and-pollution.associated with data centers will set us behind other
states and key scientific goals for a liveable planet. Proposals for new fossil-gas-dependent
energy production to meet these demands Wi” lock Wisconsin :nto a future of high toxic air
poliution and greenhouse gas emissions VMany otheretateenare currently ‘draftmg policies to
ensure that any new data center builds in their state are built responsibility, with an eye for clean
energy and a future where communities can thrive. We should siow down and follow their lead
to ensure that Wisconsin does not get left behind. N e oo

Finally, we all want good, family sustaining jobs, but analysis of builds in other states has shown
that most Al and data-centers hire few long-term employees. Fherefore, there are etﬁﬁﬁoha!\
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reasons*ro questlon WhethMposals areeven—economic epportunuy that communities
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| have pnnted offa study that looks at env;ronmfental and pubhc harms of these centers lﬁue-tbser <
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in oonclusaon I urge you to carefully nmpacts outhned today ”‘development must
prioritize Wisconsin jobs, Wisconsin families, and the health and well-being of our communities. /
Thank you for your time and consideration. A

\Y) T IR 1 ¥ L
(orgidesr Cocr

1

@:M‘g '(\/k} Lo e ash ‘/\e‘,
/

P 'S 3 % I G m
e BT, 08 MU g

- i H .
My a s 2 el g ByuET L ounl! R = AN o
f WG 1S OEGio B AN ly\i"«//"’ e f‘ ?’Q“{Cr \Txff/w{




The Unpaid Toll: Quantifying the Public Health Impact of Al

Yuelin Han Zhifeng Wu Pengfei Li Adam Wierman Shaolei Ren!
UC Riverside UC Riverside UC Riverside Caltech UC Riverside
Abstract

The surging demand for Alhas led to a rapid expansion of energy-intensive data centers, impacting the envi-
ronment through escalating carbon emissions and water consumption. While significant attention has been
paid tv Al's growing environmental footprint, the public health burden, a hidden toll of Al, has been largely
overlooked. Specifically, Al's lifecycle, from chip manufacturing to data center operation, significantly de-
grades air quality through emissions of criteria air pollutants such as fine particulate matter, substantially
irapacting public health. This paper introduces a methodology to model pollutant emissions across Al's
lifecycle, quantifying the public health impacts. Our findings reveal that training an Al model of the Llama-
3.1 scale can produce air pollutants equivalent to more than 10,000 round trips by car between Los Angeles
and New York City. The total public health burden of U.S. data centers in 2030 is valued at up to more than
$20 biltion per year, double that of U.S. coal-based steelmaking and comparable to that of on-road emissions
of California. Further, the public health costs unevenly impact ecpnomicaly-disadvantaged communities,
where the per-household health burden could be 200x more than that in less-impacted communities. We
recommend adopting a standard reporting protocol for criteria air poliutants and the public health costs of
Al, paying attention to all impacted communities, and implementing health-informed AT to mitigate adverse
effects while promoting public health equity.

1 Introduction

The rise of artificial intelligence (Al) has numerous potentials to play a transformative role in address-
ing grand societal challenges, including air quality and public health [1,2]. For example, by integrating
multimodal data from various sousces, Al van provide effective touls and actionable insights for pandemic
preparedness, disease prevention, healthcare optimization, and air quality management [1,3]. However,
the surging demand for Al — particularly generative Al, as exemplified by the recent popularity of large

language models (LLMs) — has driven a vapid increase in computational needs, fueling the unprecedented -

expansion of energy-intensive Al data centers. According to McKinsey projections, under a medium-growth
scenario {4), the US. data centers are anticipated to account for 11.7% of national electricity consumption
in 2030, a substantial increase from their current share of less than 4% in 2023,

The growing electricity demand of Al data centers has not only created significant stress on power grid
stability [5,6), but also increasingly impacts the eavironment through escalating carbon emissions [7,8] and
water consumption {9]. These environmental impacts are driven primarily by the “expansion of Al products
and services,” as recently acknowliedged by Google in its latest sustainability report [10]. To mitigate the
challenges posed to both power grids and the environment, a range of strategies have been explored, includ-
ing grid-integrated data centers [6,11], energy-efficient hardware and software [12-14], and the adoption
of carbon-aware and water-efficient computing practices [9, 15~17], among others.

The hidden toll of AL, While the environmental footprint of Al has garnered attention, the public health
burden, a hidden toll of AL, has been largely overlovked. Across its entire lifecycle — from chip manufactur-
ing to data center operation — Al contributes substantially to air quality degradation and public health costs
through the emission of various criteria air pollutants. These include fine particulate matter (PM,s, parti-
cles measuring 2.5 micrometers or smaller In diameter that can penetrate deep into lungs and cause serjous
health effects), sulfur dioxide (503), and nitrogen dioxide (NO,). Concretely, the Al hardware manufac-
turing process (18], electricity generation from fossil fuels to power AT data centers, and the maintenance
and usage of diesel backup generators to ensure continuous Al data center operation all produce signifi-
cant amounts of criteria air pollutants. Moreover, the distinct spatial-temporal heterogeneities of emission
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sources suggest that focusing solely on reducing Al's carbon footprinds may not minimize its emisstons of
criteria air pollutants or the resulting public health impacts (Section 5).

Expostre to criteria air pollutants is directly and causally linked to various adverse health outcomes,?
including premature mortality, lung cancer, asthima, heart attacks, cardiovaseuar diseases, strokes, and
even cognitive decline, especially for the elderly and vulnerable individuals with pre-existing conditions
[20-23]. Moreover, even short-term (hours to days) "M, 5 exposure is harmful and deadly, accounting for
approximately 1 million premature deaths per year from 2000 to 2019 and representing 2% of total global
deaths [24].

Glabally, 4.2 million deaths were attributed to ambient (i.e., outdoor) air pollution in 2019 [25]. Air
pollution has become the second highest risk factor for nonconmumunicable diseases {26]. Notably, according
1o the latest Global Burden of Disease report {27}, along with high blood pressure and high blood sugar,
ambient particulate matter is placed among the leading risk factors for disease burden globally in every
sacio-dernographic group.

While the U.S. has generally better air quality than many other countries, 4 in 10 people in the U.S. still
live with unhealthy levels of air poflution, according to the “State of the Air 2024” report published by the
American Lung Association [28]. In 2019 (the fatest year of data provided by the Warld Health Organization,
or WHO, as of November 2024), an estimate of 93,886 deaths in the U.S. were attributed to ambient air
pollution {29]. In fact, even compliance with the US. Environmental Protection Agency (EPA) air quality
standards does not necessarily guarantee healthy air that meets the WHO guidelines. Concretely, the EPA's
recently tightened primary standard for PMzs sets an annual average limit of 9 yg/m", considerably higher
than the WHO’s recommended level of 5 jig/mi™* {30,31]. In addition, the EPA projects that 53 U.S. counties,
including 23 in the most populous state of California, would fail to meet the revised national annual Pz
standard in 2032 [32].

Further, criteria air pollutants are not confined to the immediate vicinity of their emission sources; they
can travel hundreds of miles through a dispersion process (Le., cross-state air pollution) [33,34], impacting
public health across vast regions — pollutants from the 2024 Canadian wildfires significantly degraded air
quality across much of the U.S. and reached as far as Mexico and Europe {35].

Importantly, along with transportation and industrial activities, elech'icity generation is a major con-
tributor to ambient air poliution with substantial public health impacts {26,36,37]. For example, a recent
study [38] shows that, between 1999 and 2020, a total of 460,000 cxcess deaths were attributed to PM; s gen-
erated by coal-fired power plants alone in the US. As highlighted by the U.S. EPA [36], despite yeacs of
progress, “fossil fuel-based power plants remain a leading source of air, water, and land pollution that af-
fects communities nationwide.” Moreover, according to the U.S. Energy Information Administration (EIA)
projection {39], the coal consumption by the electricity sector in 2050 will still be about 30% of the 2024 level
in the baseline reference case, and the number will exceed 50% in the high zero-carbon technology cost case.
Indeed, the growing energy demands of Al are already delaying the decommissioning of coal-fired power
plants and increasing fossil-fuel plants in the U.S. as well as around the world [6,40,41].

The public health outcomes of Al due to its emission of criteria air pollutants lead to various losses,
such as hospitalizations, medication usage, emergency room visits, school loss days, and lost workdays.
Moreover, these logses can be further quantified in economic costs based on epidemiology and economics
regearch for the corresponding health endpoints [22,42]. In contrast, the environmental impacts of Al, e.g.,
carbon emission from fossil fuels and water consumption for data center cooling, often do not cause the
same inunediate health impacts. For instance, while anthropogenic carbon emissions could also pose risks to
public health, such impacts are often second- or third-order effects through long-term climate change which
can then threaten the human well-being by affecting the food people eat and facilitating the spreading of
pests, among, others [43]. Nonetheless, despite their immediate and tangible impacts on public health, the
criteria air pollutants of Al have remained under the radar, entirely omitted from today’s Al risk assessments
and sustainability reports [10, 44, 45].

Quantifying the public health costs of AL In this paper, we uncover and quantify the hidden public
health impacts of Al. We introduce a general methodology to model the emission of criteria air pollutants

*While we facus on public health, we note that the impncts of criteria air pollutants extend beyond humans and include harms to
environmentally seasitive ateas, such as some national parks and wilderness areas which, classified ns “Class 1 areas™ under the Clean
Alr Act, reguire speclal alr protection (19).



associated with Al tasks across three distinct scopes: emissions from the maintenance and operation of
backup generators (Scope 1), emissians from fossil fuel combustion for electricity generation (Scope 2), and
emissions resulting from the manufacturing of server hardware (Scope 3). Then, we analyze the dispersion
of criteria air pollutants and the resulting public health impacts across different regions.

Our main results (Section 4) focus on the scope-2 health impacts of U.S. data centers and, specifically,
LLM training.® Using the reduced-complexity modeling tool COBRA (CO-Benefits Risk Assessment) pro-
vided by the EPA [46], our screening analysis demonstrates that driven by the growing demand for Al,
the U.S. data centers could contribute to, among others, approximately 600,000 asthma symptom cases and
1,300 premature deaths in 2030, exceeding 1/3 of astbma deaths in the U.S. each year [47]. The overall public
health costs could reach more than $20 billion, double thal of the U.S. coal-based steelmaking industry [48),
and rival or even top those of on-road emissions of the largest U.S. states such as California with ~35 mil-
lion registered vehicles [49]. Moreover, depending on the location, training an Al model of the Liama-3.1
scale can produce an amount of air pollutants equivalent to driving a car for more than 10,000 round trips
between Los Angeles and New York City (LA-NYC), resulting in a health cost that even exceeds 120% of
the training clectricity cost.

Critically, the health costs are unevenly distributed across counties and communities, disproportionately
affecting low-income counties (¢.g., Meigs County, Ohio) where the per-household health burden could be
equivalent to nearly 8 months of electricity bifls and more than 200x compared to that in other counties.

In addition, to hightight the importance of scope-1 and scope-3 health impacts, we consider data center
backup generators in Virginia (Scope 1) and semiconductor manufacturing plants in Arizona and Ohio
(Scope 3). Our analysis shows that, assuming the actual emissions ave only 10% of the permitted level,
the data center backup generalors registered in Virginia (imostly in Loudoun, Prince Willian, and Fairfax)
could already cause 14,000 asthma symptom cases among other health outcomes and a total public health
burden of $220-300 million per year, impacting residents in multiple surrounding states and as far as Florida
(Section 2.2.1). If these data centers emit air pollutants at the maximum permitted level, the total public
health cost will become 10-fold and reach $2.2-3.0 bitlion per year. The scope-3 health impact of Alis also
substantial. For example, just a single semiconductor facility in Arizona can cause an annual public health
cost of $26-39 million, with $14-21 million attributed to the facility's on-site emissions of criteria air poilutants
(Section 2.2.2}. Furthermore, relocating the same facility to a plained site in Ohio could almost quadruple
the public health cost to $94-156 million, with §23-36 million resulting from on-site emissions.

Finally, we provide recommendations to address the increasing public health impact of Al (Section 5).
Specifically, we recormmend technology companies adopt a standard reporting protovol for criteria air pol-
lutants and public health impacts in their Al model cards and sustainability reports, implement health-
informed Al to proactively minimize the adverse health effects of Al data centers, pay attention to all im-
pacted communities, and prioritize reducing the health fimpact on disadvantaged communitics to promote
public health equity.

To summarize, our study sheds light on and quantifies the overlooked public heaith impact of AL It
can inform the public, policymakers, and technology companies in conducting a more comprehensive cost-
benefit analysis. We also urge further research to comprehensively address the public health implications
when developing powerful and truly responsible Alin the future, ensuring that the growth of Al does not
exacerbate the health burden or outweigh the potential benefits Al can provide to improve public health,

2 Background on the Air Quality Impact of Al

This section presents an overview of Al's impact on air quality and contribution to criteria air pollutants
throughout its lifecycle, beginning with background on criteria air poliutants and U.S. air quality policies,

2.1 Criteria Air Pollutants

Criteria ait pollutants, inctuding PMy 5, SO; and NOs, are a group of airborne contaminants that are emitted
from various sources such as industrial activities and vehicle emissions. The direct emission of PMy s is called

30ur study focuses on the 48 contiguous U, states plus Washington D.C. because the EPA data does nat include other reginns [46].
if focated n countries with higher population densities or fess strict air quality standards, the same Al task and dala centers would
likely contribute to significantly more deaths and other adverse health effects. We recommend further research on the public health
impact of Al outside the US.

primary PV, while precursor poltutants such as 503, NO,, and VOCs, can form secondary PMas and/or
ozanes {50]. These air pollutants can travel a long distance (a.k.a. cross-state air pollution), posing direct
and significant risks to public health over large areas, particularly for vulnerable populations including the
elderly and individualy with respiratory conditions {33,34].

Long-term exposure to PM, s, even at a low level, are directly linked to numerous health outcomes,
including premature mortality, heart attacks, asthma, stroke, lung cancer, and even cognitive decline [21,22].
These health effects result in various losses, such as hagpitalizations, medication usage, emergency room
visits, school loss days, and lost workdays, which can be further quantified in economic costs based on
public health research for various health endpoints [42]. In addition, short-term (hours to days) PMas
exposure is also dangerous, contributing to approximately 1 million premature deaths per year globadly
from 2000 to 2019 [24]).

Under the Clean Air Act, the U.S. EPA is authorized to regulate the emission levels of criteria air pollu-
tants, reducing concentrations to comply with the National Ambient Air Quality Standards (NAAQS) {51].
For example, the NAAQS primary standards set the annual average PM,5 concentration at 9y/m? and
the 98-th percentile of 1-hour daily maximum NO, concentration at 100 parts per billion by volume, both
counted over three years [31]. In addition, state and local govertuments may set additional regulations on
criteria air pollutants to strengthen or reinforce national standards [52].

While CO; is broadly classified by the EPA as an air pollutant following the U.S, Supreme Court ruling
in 2007 [53] and contributes to long-term climate change, it often does not cause the same immediate health
impacts as criteria pollutants. In the U5, CO; and other greenhouse gases are subject to different EPA
regulations from those for criteria air poliutants. Thus, for the sake of presentation in this paper, we use “air
pollutants” to solely refer to criteria air poilutants wherever applicable.

2.2 AY's Contribution to Air Pollutants

To understand the impact of Al on air quality, we focus on the three scopes over which Al contributes to
criteria air pollutants as well as other toxic materials. The scoping definition in this paper parallels the
well-established greenhouse gas protocol {54].

221 Scopel

The scope-1 public health impact of Al primarily comes from the emission of operating on-site backup
generators. Data centers are mission-critical facilities that are designed to operate with high availability
and uptime guarantees. As a result, to maintain operation during emergencies such as grid outages, Al
data centers require highly reliable backup power sources {10, 45). Diesel generators are known to emit
significant amounts of air pollutants and even hazardous emissions during operation. For example, they
emit 200-600 times more NO, than new or controlled existing natural gas-fired power plants for each unit
of electricity produced [55). Nonetheless, there is limited experience with cleaner backup alternatives that
can provide comparable reliability in real-world settings, as highlighted by the U.S. Department of Energy
in ils recent recommendations regarding Al data center infrastructures {6}, Consequently, Al data centers,
including those newly built by major technology companies, primarily depend on on-site diesel generators
for backup power [6, 10,45,56). For example, in northern Virginia (mostly in Loudoun, Prince William,
and Fairfax), the number of permits for data center diesel generators has increased by about 70% since 2023
compared to the total number of permits issued between 2000 and 2022 [56].

While diesel generators need to comply with air quality regulations and typically do not operate over
extended periods of time, regular maintenance and testing are essential to ensure their operational reliabil-
ity. In addition, capacity redundancy is typically followed for diesel generator instalfations to ensure high
availability [58). Thus, diesel generators represent a major source of on-site air pollutants for data centers
and pose a significant health risk to the public {§9]. For instance, the total permitted annual emission limits
for data centers in northern Virginia are approximately 13,000 tons of NO, 1,400 tons of VOCs, 50 tons of
S0,, and 600 tons of PMys, all in U.S. short tons. Assuming that the actual emissions are only 10% of the per-
mitted level, these backup generators could already cause 14,000 asthma symptom cases and 13-19 deaths
each year among other health implications, resulting in a total annual public health burden of $220-300 mil-
lion throughout the U.S. This includes $190-260 million in Virginia, West Virginia, Maryland, Pennsylvania,
Delaware, New jersey, New York, and Washington D.C. We show the county-level health cost and the top-10
counties in Figure 1, while deferring the details of calculations to Appendix A.3.
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Figure 1: The county-level total scope-1 health cost of data center backup genertors operated in Virginia (mostly in
Loudoun County, Faitfax Cownty, and Prince William County) [57]. The backup generators are assumed to ewit air
poliutants at 10% of the permitted levels per year, The total annual public health cost is $220-300 million, including
$190-260 wiillion incurred in Virginia, West Virginia, Maryland, Pennsylvania, New York, New fersey, Delatware, and
Washington D.C. (a) Counly-level health cost in Virginia, West Virginia, Maryland, Pennsyloania, New York, Netv
Jersey, Delaware, and Washinglon D.C. Counlies with data centers are marked inn orange, except for Loudown Counly
(marked in yellow). () COF af the county-level cost. (c) Top-10 counties by the total health cost,

Moreover, due to power grid capacity constraints in many US. states, Al data centers are increasingly
pressured to vary their loads subject o the grid’s operating conditions, i.e., grid-integrated data centers
[6,60]. This trend may necessitate extended reliance on backup generators, e.g., possibly 15 days per year
{6]. Such prolonged usage of diesel gencrators could substantially clevate Al's scope-1 air pollution, creating
even higher public health costs. Concretely, if the backup generators in northern Virginia emit air pollutants
at the maximum permitted level, the total public health cost could reach $2.2-3.0 billion per year.

What further adds to the public health threat is that many data center generators in a region may operate
simultaneously for demand response during grid capacity shortages, potentially resulting in a short-term
spike in PMys and NO, emissions that can be particularly harmbul [6,24,31].

2,22 Scope?2

While technology companies have started implementing various initiatives — such as purchasing renewable
energy credits and nuclear power from smali modular reactors {5,10,61] — to lower their (market-based)
carbon emissions, the vast majority of U.S. data centers remain directly powered by local power grids with
a substantial portion of fossil fuel-based energy sources [10]. Thus, just as Al is accountable for scope-2
carbon emissions, it also confributes to scope-2 air pollution through its electricity usage.

The combustion of fossil fuels for electricity production is a major emitter of criteria air pollutants, re-
leasing large amounts of PM, s, 50,, NO,, VOCs, and others.! Critically, the growing energy demands of
Al are already delaying the decommissioning of coal-fired power plants and increasing fossil-fuel plants in
the U.S. and other countries [6,40]. For example, in addition to keeping 2,099 MW coal generation capacity
until 2039 (inore than 80% of the 2024 level), Virginia Electric and Power Company plans to install 5,934
MW gas-fired plants to meet the growing energy demand driven by Al data centers {41]. At the national
level, per the EIA’s projection, [39], the 2050 natural gas consumption for U.S. electricity generation will
be about 80% of the 2024 level in the baseline reference case, and even exceed the 2024 level by 20% if the
zero-carbon technology cost is high; for coal consumption by the electricity sector in 2050, the numbers will
also be considerably high, about 30% and over 50% of the 2024 level in the baseline reference case and in the
high zero-carbon technology cost case, respectively. These projections were published by the EIA at the very
beginning of the generative Al boom In early 2023. More recently, it has been reported that Al data centers
could even be primarily powered by coal power plants in some countries [40]. As a result, Al's scope-2 air
pollution is expected to remain at a high level for a substantially long time into the future.

We also note that the practice of using various credits to offset scope-2 carbon emissions [10] may not be

HWet couling towers, including those used by data centers [9, 16} and carbon-free nuclear power plants, rely on water evaporation
for heat rejection and produce I'M; s due lo spray dri{t droplets {62,63]. Nonetheless, because of fimiled data avallable, we exclude
the cooling tower PMas emission from our analysis unless other specified.

effective for mitigating the scope-2 public health impact. The reason is that the public health impact of using
grid electricity is highly location-dependent, e.g., the impact in a populated region may not be mitigated by
renewable energy generated elsewhere.

223 Scopel

The surging demand for Al necessitates large quantities of computational hardware, including graphics
processing units (GPUs), thus intensifying the supply chain requirements [64]. However, semiconduc-
tor manufacturing generates various criteria air pollutants, wastewater, toxic materials, and hazardous air
emissions [18]. Moreaver, the energy-intensive nature of semiconductor praduction further contributes to
pollutants from power plants. Combined with other pollution sources such as transportation and electronic
waste recycling [65], the supply chain activities form a large portion of Al's scope-3 impact on public health.

Although semiconductor manufacturing facilities are subject to air quality regulations [66], they still
pose significant risks, affecting populations across large regions. Maricopa County, AZ, has been an EPA-
designated non-attainment area for several years due to its failures to meet federal air quality standards [67).
The establishment of multiple semiconductor facilities in such areas could further exacerbate air quality
issues. Tn 2023-2024, the estimated annual public health impact of a single semiconductor facility was §26-
39 million, with $14-21 million attributed to direct on-site emissions of air pollutants from the facility, based
on COBRA estimates [18,46]. Moreover, relocating the facility to a planned site in Licking County, Ohio,
could neatly quadruple public health costs to $94-186 million, with $23-36 million resuiting from direct on-
site emissions. This increase is partly due to Ohio’s weather conditions and higher reliance on coal-based
power [68]. The details of calculations are available in Appendix A4. [mportantly, the global demand for
Al chips in 2030 is projected to be tens of times of the overall production capacity of this single facility [69],
further magnifying the overall scope-3 public health impact of Al Tt is also worth noting that additional
pollutants, including hazardous alr poliutants like hydrogen fuoride, may further elevate public health
couts but are not included in this analysis.

3 Quantifying the Public Health Impact of Al

To quantify the public health impact of Al, we present a general methodology that quantifies Al's critevia air ©
pollutants at the emission source, models its dispersed air pollutants at different receptors (i.c., destination
regions), and finally obtains the public health impact and cost at each receptor.

Foran Al task (e.g., Al model training), we consider A types of criteria air pollutants, ¥ receptor regions
of interest (e.g., all the US. counties), # types of public heaith impacts (e.g., mortality, asthma symptoms,
school loss days, etc.). We use p° = (pf,-- ,p}) and pf = (p |, .p ;) denote the quantities for M
types of air pollutanis attributed to the task at the emission source and at the receptor i, respectively, for
i=1,---,N. Additionally, we use h; = (1, 1.+ .l ) and ¢; = (ciy, +- ¢, 1) to denote the incidences
and economic costs associated with H types of health impacts at receptor i, respectively, for i = 1,--. | N.
With a slight abuse of notations, we reuse these symbols when modeling Al's public health impacts across
the three different scopes.

3.1 Criteria Air Pollutants at the Source
We first model Al's criteria air poilutants at the source across the three different scopes in Section 2.2.
311 Scopel

On-site backup diesel generators are sized based on the data center power capacity and routinely tested
to ensure a high availability of the entire data center. Thus, the overall scope-1 air pollutants shoutd be
attributed to each computing task based on its power allocation and duration. Suppose that the overall
scope-1emissionby an Al data center under considerationis 5 = (p}, .-+ , B},), for M types of air pollutants,
over a timespan of T {e.g., one year). Considering an Al task that Is allocated a fraction of = € (0,1} of
the overall data conter power capacity and lasts for a duration of 7', we express the scope-1 air pollutants
sttributed ta the Al task as

(1)

which attributes the overall emission ji* to the task in propaction to its allocated power and duration.



3.1.2 Scope2

Al's scope-2 air pollutants come from its usage of electricity generated from fossil fuels. Suppose that the
power grid serving the Al data center has an emission rate of v = (1, - -+ , vas) for M types of air pollutants to
produce each unit of electricity. In practice, the power grid consists of multiple interconnected power plants
to supply electricity to many customers over a wide area (e.g., a balancing area [70]). Thus, simliar to carbon
footprint accounting [71], the ajr potlutant emission rate -y can be calculated based on either the weighted
average emission rate of all the power plants (i.e, v = —):i:’—‘,:—‘ where v, and by are the emission rate and
clectricity generation of the power plant k) or the emission rate of the marginal power plant (i.e., the power
plant dispatched in response to the next electricity demand increment), which are referred to as average
emission rate or marginal emission rate, respectively. The average emission represents a proportional share
of the overall air pollutant emission by an electricity consumer, while the marginal emission is useful for
quantifying the additionality of air pollutants due to a consumer’s electricity usage.

Suppose that the electricity consumption by the Al task is ¢, including the data center overhead captured
by the power usage elfectiveness. Then, we can write the scope-2 air pollutants as

P=e (2)

which is either based on either average attribution or marginai attribution. While the marginal emission is
typically associated with a single marginal power plant, the average emission is spread across all the inter-
connected posver plants within a wide area such as a power balancing area [70,71]. Thus, when considering
the average attribution method, we split the energy consumption e over all the power plants in proportion to
their contributions to the grid’s supply and calculate the corresponding per-plant emission. It other words,
each involved power plant is an individual pollution source, and the air pollutant emission at the k-th power
plantis . = ¢- 5:%’7 - 7%, where by, is the electricity generation of the k-th power plant.

Since both the average and marginal air pollutant emission rales vary over time and locations to meet the
supply-demand balance, we can also refine the calculation of scope-2 air pollutants in (2) by considering
the summation of air pollutants over multiple time slots over the Al task’s duration.

3.1.3 Scope3

Following the attribution method for scope-3 carbon emission and water consumption {9, 13], we attribute
the Al hardwarc's air pollutants during the manufacturing process to a specific task based on the task du-
ration. Specifically, let the Al hardware’s expected lifespan be Tq and the Al task lasts a duration of 7.
Considering that the M types of air pollutants for manufacturing the Al hardware are iy = (75 1.+ -/ 57)
and excluding other miscellaneous pollutants (e.g., transportation), we obtain Al's scope-3 air pollutants as

T
"= = - 3
1 T Yy (3)
As an Al server cluster includes multiple hardware components (e.g., GPU and CPU) manufactured in
different locations, we apply (3) to estimate the scope-3 air pollutants for each component manufactured in
a different location.

3.2 Air Quality Dispersion Modeling

Once emitted from their sources, critetia air poliutants can travel long distances, impacting multiple states
along their paths. Unlike carbon emissions that have a similar effect on climate change regardless of the
emission source locations, the public health impact of criteria air pollutants heavily depends on the location
of the emission source. Generally, the closer a receptor is to the source, the greater the air quality impact.
Furthermare, the dispersion of air pollutants is influenced by metearological conditions, such as wind speed
and direction.

The movement of air pollutants can be modeled using mathematical equations to simulate the atmo-
spheric processes governing the dispersion, known as dispersion modeling. By incorporating emission data
and meteorological inputs, dispersion modeling can predict pollutant concentrations at selected receptor lo-
cations {72]. We consider a gencral dispersion model (pf,- - .ply) = Da(p*), which yields the amount of
M types of ait pollutants pf = (p],;,--- ,p} ) at the receptor region ¢ = 1...-, N. The parameter # cap-
tures the geographical conditions, emission source characteristics {e.g., height), and meteorological data if

applicable [73]. We apply the dispersion model to cach scope of air pollutants (Section 3.1) to estimate the
corresponding poliutant concentrations at receptor regions.

In practice, many dispersion modeling tools are available, including AERMOD, CTDMPLUS, PCAPS and
InMAP with a reduced complexity {22,72,74,75). For example, PCAPS (Pattern Constructed Air Pollution
Surfaces), an advanced reduced-complexity model that provides representations of both primarily emit-
ted PM; 5 and secondarily formed PM; 5 and ozone, is used in COBRA as a quick assessment of otherwise
lengthy iterations and simulations of varlous pollution scenarios in terms of the annual average PM, s and
scasonal average maximum daily average 8-hour ozone [22,75]. Even compared with state-of-the-sclence
photochemical grid models, PCAPS provides similar prediction accuracies and can realistically capture the
change in air pollution due to changing emissions {75]. More specifically, for electric power sectors and
on-road/highway vehicle sectors {the two sectors we consider in Section 4), the prediction results of PCAPS
compare very well with photochemical model predictions, with Pearson correlation coefficients of 1.92 and
0.94, respectively [22,75].

3.3 Converting Health Outcomes to Economic Costs

By assessing pollutant levels pf = (pf .-+ ,p} 3;) and population size at each receplor region i, we can
estimate the incidences of health outcomes h; = (h;1,--- [l 5} and the corresponding public health cost
¢; = {cin, -+~ ,cim). The relations between p!” and &; and between h; and ¢, can be established based on
cpidemiology vesearch {22]. For example, the premature mortality rate can be modeled as a log-linear
function in terms of the PMa s level [23].

Further, by summing up the economic costs, we obtain quantitative estimates of the public health burden
at both regional and national levels. It is important to note that the public health cost is not necessarily an
out-of-pucket expense incurred by each individual, but rather reflects the estimated economic burden on a
population to mitigate the adverse effects of pollutants within a specific region. Therefore, it is a quantitative
scalar measure of the public health impact resulting fror a particular pollutant-producing activity.

3.4 Implementation

We now briefly describe the specific implementation we use to study the public health impact of U.S. data
centers and Al training. The defails are available in Appendix A.

Due to the limited data available for scope-1 and scope-3 impacts, we mainly focus on the scope-2 health
impacts from electricity consumption. To account for future uncertainties, we use the U.S. data center elec-
tricity consumption data provided by EPRI [5] and McKinsey {4] under various growth-rate scenarios,
excluding cryptocurrency servers. Unless otherwise specified, we consider the average attribution method
by default, i.e., attribute the overall health impact within an electricity region to data centers in proportion
to their electricity consumption.

To model the air pollutant dispersion and quantify health impacts, we use the latest COBRA (Desktop
v5.1, as of October 2024) provided by the US. EPA [46]. COBRA integrates reduced-complexity air dis-
persion modeling (including both primarily emitted PMas and secondly formed PMys and ozone [75])
with various concentration-response functions {22}, offering a quantitative screening analysis pacticularly
suitable for large-scale health impacts. The same or similar reduced-complexity modeling tools have been
commonly used in the literature to examine the health impacts of various industries over a large area [ 74,76},
including electric vehicles [77], bitcoin mining [78), and inter-region electricity imports [79], among oth-
ers, While cach health impact model used by COBRA considers 95% confidence intervals, the high-end and
low-cnd estimates provided by COBRA are based on different models instead of the 95% confidence interval
of a single model [22]. COBRA provides data for county-level population, health incidence, and valuation
projections in 2030, but the baseline emissions are missing [46]. Thus, to account for model uncertainties,
we estimate the 2030 baseline emission by extrapolating the COBRA data for 2016, 2023, and 2028 using
three extrapolation methods (Linear, Exponential, and Unchanged) as detailed in Appendix A.1.

We only consider the contiguous U.S. and simply refer to it as the U.S. For consistency with COBRA,
cities considered caunty-cquivalents for census purposes are also referred lo as “counties” in our paper. All
our monctary values are for one year (or one Al task if applicable) and in 2023 U.S. dollars,



4 Results

We now present our estimates of the public health impacts caused by the US. data centers in aggregate and
by training a large generative Al madel at specific locations. Our results demonstrate that in 2030, the scope-
2 pollutants of U.S. data centers alone could cause, amaong others, approximately 600,000 asthma symptom
cases and 1,300 premature deaths, exceeding 1/3 of asthma deaths in the U.S. each year [47}. The overall
public heaith costs of U.5. data centers could rival or even exceed those of on-road emissions of the Jargest
U.S. states such as California. Moreover, depending on the locations, training an Al model of the Llama-3.1
scale can produce an amount of air poliutants equivalent to driving a passenger car for more than 10,000
LA-NYC round trips, resulting in a health cost that even exceeds 120% of the training electricity cost. Im-
portantly, the heaith costs are dispropartionately distributed across counties and communities, pnrticularly
affecting low-income counties that could experience more than 200x per-household health costs than others.

4.1 TPublic Health Impact of U.S. Data Centers in 2023

We first show in Table 1 the public health cost of US. data centers in 2023 as a reference® Even at the
beginning of the generative Al boom, the U.S. data centers have already resulted in a total public health cost
of about $5.6 bitlion, or $39.7 per household, in 2023, This is equivalent to 43% of the data centers’ total
electricity cost. By considering marginal attribution, the US. data centers’ public health cost increases to
about $7.6 billion in 2023, due to the heavy reliance on fossil fuels by many marginal generators {70]. This
suggests that, by powering the U.S. data centers using alternative energy sources (e.g., geothermal) off the
main grid, the U.S. could have seen a public heaith benefit of $7.6 biliton in 2023. Additional results can
be found in Appendix B, including county-wide total and per-household health costs that demonstrate the
uneven distribution of health impacts across different communities.

Table 1; The public health cost of U.S. data centers tn 2023.
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Tble 2: The public health cost of U.S. data centers in 2030 based on EPRI's energy demand projection [5). “t* denotes
McKinsey's projection wnder a miedivne growth rate [4].
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Mobile sources, including vehicles, marine engines, and generators, collectively account for more than
half of the air pollutants in the U.S., with vehicles being a primary contributor [80,81]. Thus, we contextu-
alize the data centers’ public health cost by comparing it to that of on-road emissions of California, which
has about 35 million registered vehicles and exhibits the highest public health cost resulting from on-road
emissions ameng all the U.S. states [46,49]. On-road emissions are categorized as the “Highway Vehicles”
sector in COBRA and include both tailpipe exhaust and tire and brake wear. The details of calculating on-
road emissions and the corresponding health costs are available in Appendix A.1. We see from Table 1 that
in 2023, the total public health cost of U.S. data centers exceeds 1/3 of that of California’s on-road emissions.

4.2 Public Health Impact of U.S. Data Centers in 2030

This section presents our projections of the public health cost of the U.S. data centers in 2030,

We first show in Fig. 2 the health costs of U.S. data centers and compare them with top-3 state on-road
emissions in 2030 by using different extrapolation methods. More detailed results are available in Table 2.
Due to the tightening air pollutant regulations {82}, the health costs of on-road emissions — a primary
source of air pollutants in the U.S. — have generally decreased from 2016 to 2030. In contrast, the surging
demand for Al data centers in the U.S. has outweighed the power plant emission efficiency improvement, po-
tentially quadrupling the public health cost from 2023 to 2030. Under McKinsey’s projection with a medium
growth rate, the scope-2 pollutants of U.S. data centers in 2030 alone could cause, among others, approx-
imately 600,000 asthma symplom cases and 1,300 deaths, exceeding 1/3 of asthma deaths in the U.S. each
year [47]. Importantly, the public health costs of U.S. data centers could rival or even exceed those of on-
road emissions of the largest U.S. states including California, suggesting a need for urgent attention to the
health impact of U.S. data centers beyond on-road cmissions.

FiVe use the “mid (fow, high)” format to rey the midrange, low and high
single volue or a ratio (e.g., health-to-electricity cost ratio), we use the midrange by default,

offered by COBRA. When presenting a

Next, we show in Fig. 3 the county-level per-household health cost of U.S. data centers in 203() based on
exponential extrapolation under McKinsey's medium-growth forecast. We see that the health cost is highly
disproportionately distributed across different counties and communities, particularly affecting low-income
communities. The ratio of the highest county-level per-household health cost to the lowest cost could be
more than 200. Crucially, all the top-10 courities In the U.S. and 9 out of top-10 counties in Virginia (svhich
has the largest concentration of data centers in the U.S. [4,5]) have lower median household incomes than
the national median value. Moreover, many of the hardest-hit communities do not have large data centers or
directly receive economic benefits from Al data centers such as tax revenues. Yet, compared to the national
average of about 1 month of electricity bill per year, the households in these communities coutd each suffer
from health immpacts equivalent to up to ~8 months of their electricity bills. The high degree of disparity
across different communities in terms of the public health cost suggests that we must examine the local and
regional health impacts of Al data centers and improve public health equity to enable truly responsible AL

We also show the county-level total public health cost in Fig. 4. Compared to the per-household health
cost distribution in Fig. 3, the county-lovel total health cost distribution is more aligned with the population
distribution — despite the low per-hausehold health cost, populous counties in Catifornia have a high total
health cost. Nonetheless, some less populous counties (e.g., Hamilton County, Ohio) near coal and/or
natural gas power plants are stili significantly impacted and even more so than those (e.g., Loudoun County,
Virginia) that have high concentrations of data centers.

4.3 Public Health Iinpact of Geperative Al Training

We now study the health impact of training a generative Al model. Specifically, we consider the training of
an LLM and assume that the electricity consumption is the same as training Llama-3.1 recently released by
Meta [84]. While sve use Meta’s Llama-3.1 training electricity consumption and 1.S. data center locations
as an example, our results should be interpreted as the estimated public health impact of training a general
LLM with a comparable scale of Llama-3.1.

We show the results in Table 3. It can be seen that the total health cost can even exceed 120% of the
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Table 3: The public health cost of hraining an Al model of the Llama-3.1 scale in Metn's U.S. data centers.
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electricity cost and vary widely depending on the training data center locations. For example, the lotal
health cost is only $0.23 million in Oregon, whereas the cost will increase dramatically to $2.5 million in Towa
due to various factors, such as the wind direction and the pollutant emissjon rate for electricity generation
[70]. Additionally, depending on the locations, training an Al model of the Llama-3.1 scale can produce an
amount of air pollutants equivalent to more than 10,000 LA-NYC round trips by car.

The results highlight that the public health impact of Af model training is highly location-dependent.
Combined with the spatial flexibility of model training, they suggest that Al model developers should take
into account potential health impacts when choosing data center locations for training,

5 Our Recommendations
We provide our recommendations to address the increasing public health impact of Al

Recomumendation 1: Standardization of Reporting Protocols

Despite their immediate and tangible impacts on public health, criteria air poliutants have been entirely
overlooked in Al model cards and sustainability reports published by technology companies [10, 44, 45].
The absence of such critical information adds substantial challenges to accurately identifying specific Al
cata centers as a key root cause of public health burdens and could potentially pose hidden risks to public
health. To enhance transparency and lay the foundation for truly responsible Al, we recommend standard-
ization of reporting protocols for criteria air pollutants and the public health impacts across different regions.
Concretely, criteria air pollutants can be categorized into three different scopes (Section 2.2), and reported
following the greenhouse gas protocol widely adopted by technology companies {10,45,85).

Just as addressing scupe-2 and scope-3 carbon emissions Is important for mitigating climate change, it
is equally crucial to address scope-2 and scope-3 criteria air pollutants to promote public health through-
out the power generation and hardware manufacturing processes in support of Al. For instance, power
plants are dispatched based on real-lime energy demand to ensure grid stability. As a result, ovly focusing
on regulating scope-2 air pollutants at the power plant level fails to address the root cause — clectricity
consumption — and overlooks the potential of demand-side solutions. In contrast, recognizing scope-2 air
pollutants and their associated public health impacts enables novel opportunities for health-informed Al,
which, as detailed below, taps Into demand-side flexibilities 16 holistically reduce Al's adverse public health
impacts.

Recommendation 2: Health-informed Al

Data centers, including thuse operated by major technalogy companies [10,45}, predominantly rely on grid
electricity due to the practical challenges of installing on-site low-pollutant and low-carbon energy sources
at scale. However, the spatial-temporal variations of scope-2 health costs (Fig. §) open up new opportu-
nities to reduce the public health impact by exploiting the high scheduling flexibilities of Al training and
inference workloads. For example, as further supported by EPRY's recent initiative on maximizing data cen-
ter flexibility for demand response [11], Al training can be scheduled in more than one data center, while
multiple Al models with different resource-performance tradeoffs are often available to serve Al inference
requests. To date, the existing data centers have mostly exploited such scheduling flexibilities for reducing
electricity costs [86], carbon emissions [15], water consumption [87], and/or environmental inequity [88].
Nonetheless, the public health impact of Al significantly differs from these environmental costs or metrics.

Concretely, despite sharing some common sources (e.g., fossil fucls) with carbon emissions, the public
health impact resulting from the dispersion of criteria air pollutants is highly dependent on the emission
source location and only exhibits a weak correlation with carbon emissions. For example, the some quantity
of carbon emissions generally results in the same climate change Impacts regardless of the emission source;
in contrast, criteria air poliwtants have substantially greater public health impacts if emitted in densely pop-
ulated regions compared to sparsely populated or unpopulated regions, emphasizing the Importance of
considering spatial variabitity.

To further confirm this point, we analyze the scope-2 marginal carbon intensity and public health cost for
cach unit of electricity generation across all the 114 U.S. regions between Octaber 1, 2023, and September 30,
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Figure 5: Analysis of marginal scope-2 carbon emission rates and public health costs vver 114 ULS. regions befween
October 1, 2023 and Scptember 30, 2024 {71]. (a) In 116 ont of e 114 LLS. regions (96%), the normalized IQR of
marginal health cost is higher than that of marginal carbon intensity. (b) In 90 out of the 114 U.S. regions (79%),
the norwalized standard deviation of marginal liealth cost s higher than that of marginal carbon intensity. {c) The
Pearson correlation hetween the per-region yearly average marginal health cost and carbon inlensity is 0.292.

2024, provided by {71}.% The time granularity for data collection is 5 minutes. We show in Fig. 5a the region-
wise normalized interquartile ranges (IQR divided by the yeatly average) for both public health costs and
carbon emissions. The normalized IQR measures the spread of the time-varying health and carbon signals.
Specifically, in 110 owt of the 114 U.S. regions (96%), the normalized IQR of health cost is higher than that
of the carbon intensity for each unit of electricity consumption. Moreovet, the normalized IQR for carbon
emissions is fess than 0.2 in most of the regions. This implies that health costs exhibit a greater temporal
variation than carbon emissions in 110 out of the 114 U.S, regions. Likewise, in Fig. 5b, the greater temporal
variation of health costs is also supported by its greater normalized standard deviation (STD divided by the
yearly average) in 90 out of the 114 U.S. regions (79%). Next, we show in Fig. Sc the weak spatial correlation
(Pearson correlation coefficient: 0.292) between the yearly average health cost and carbon intensity across
the 114 regions. Furthermore, the normalized IQR of the health cost spatial distribution is 3.62x that of
carbon emission spatial distribution (1.05 vs. 0.29), while the health-to-carbon ratio in tetms of the spatial
distribution’s normalized STD is 3.37 (0.64 vs. (.19). In other words, the health cost has a greater spatial
spread than the carbon emission.

‘These findings highlight that leveraging spatial-temporal variations in a health-aware manner could sig-
nificantly reduce Al's public health costs while still maintaining climate benefits. As a result, we advocate
for a new research direction — health-informed Al Specifically, decisions regarding the siting of Al data
centers and the runtime scheduling of Al tasks should explicitly address their public health impacts. By
judiciousty accounting for and exploiting the spatial-temporal diversity of health costs, Al data centers can
be optimized to minimize adverse public health impacts while supporting sustainability goals.

Additionally, as the public health awareness serves as an effective implicit incentive (e.g., as demon-
strated in the context of residential energy conservation [89]), Al data cenler operators can also leverage
this approach by informing end users about the public health impacts of their Al usage. This may help
extract additional user-side demand flexibilities as part of the recent efforts to maximize the overall data
center Joad flexibility (11].

Recommendation 3: Attention to All

Counties and communities located near Al data centers or supplying electricity to them often experience
most significant health burdens. Nonetheless, these health impacts can extend far beyond the immedi-
ate vicinity, affecting communities hundreds of miles away {33, 34). For example, the health impact of

5The health cost signal provided by [71] enly considers mortality from PM, 5, while COBRA includes a vartety of health outcomes
including asthima, ung cancer, and mortality frony vzone, among others [22).
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backup generators in northern Virginia can affect several surrounding states (Fig. 1a) and even reach as
far as Florida.

While the health impact on communities where data centers operate is increasingly recognized, there
has been very little, if any, attention paid to other impacted communities that bear substantial public health
burdens. This disconnect leaves those communities to shoulder the public health cost of Al silently without
receiving adequate support. To fulfill their commitment to social responsibility, we recommend technology
companies holistically evaluate the cruss-sinte public health burden imposed by their operations on all im-
pacted communities, when deciding where they build data centers, where they get electricity for their data
centers, and where they install renewables.

Additionally, to quantify the health effects on impacted communities with greater accuracy for potential
regulatory actions, we recommend further interdisciplinary research such as cross-state air quality disper-
sion, health economics, and health-informed computing.

Recommendation 4: Promoting Public Health Equity

The public health impact of Al is highly unevenly distributed across different counties and communities in
the U.S,, often disproportionately affecting low-income communities and potentially exacerbating socioeco-
noinic inequities {37,90]. For example, as shown in Table 3¢ and 3d, all the top-10 counties in the U.S. and
9 out of top-10 counties in Virginia have lower median household incomes than the niational median value.
The ratio of the highest county-level per-houschold health cost to the lowest cost could be mare than 200.
Criticatly, minimizing the total heaith cast without considering equity can even reinforce existing inequities,
similar to the way enviconmental inequities have been amplified {88]. Therefore, it is imperative to address
the substantial health impact disparities across communities and ensure that Al fosters public health equity
rather than exacerbating inequities.

6 Conclusion

In this paper, we uncover and quantify the overlooked public health impact of Al. We present a general
methodology to model air pollutant emissions across Al's lifecycle, from chip manufacturing to data center
operation, Our findings demonstrate that under McKinsey's projection with a medium-growth scenario, the
U.S. data centers in 2030 could contribute to nearly 1,300 deaths annually, resulting in a public health bur-
den of more than $20 billion which could even exceed that of on-road emissions of California. Importantly,
these public health costs are unevenly distributed and disproportionately impact low-income communities,
where the per-household health burden could be equivalent to nearly 8 months of electricity bills and 200x
compared to other less-impacted counties. We recammend adopting a standard reporting protocol for cri-
teria air pollutants and public health costs, paying attention to impacted communities, and implementing
health-informed Al to mitigate these effects while promoting public health equity.

Our study provides novel insights for the public, policymakers, and technology companies, enabling a
more comprehensive cost-benefit analysis of Al's imipacts on society. We also call for further research to
fully address the public health implications when developing powerful and responsible Al in the future. [t
is crucial to prioritize public health and ensure that the growth of Al does not exacerbate health burdens or
negate the potential benefits Al can bring In improving public health.
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Appendix
A Implementation Details

We describe the evaluation methodology used for our empirical analysis. We use the latest COBRA (Desktop
v5.1, as of October 2024) provided by the U.S. EPA [46] to study the public health impact of U.S. data
centers in both 2023 and 2030. While COBRA uses a reduced-complexity air quality dispersion model based
on a source-receptor matrix for rapid evaluation, its accuracy has been validated and the same or similar
model has been commonly adopted in the literature for large-area air quality and health impact analysis
{74,76,78,79]. We consider county-level air pollutant dispersion throughout the contiguous U.5., which
is the area currently supported by COBRA {46]. Note that cities considered county-equivalents for census
purposes are also referred to as “counties” in COBRA. Throughout the paper, we use “county” without
further specification.

All the monetary values are presented in the 2023 U.S. dollars unless otherwise stated. We set the dis-
count rate as 2% in COBRA as recommended by the EPA based on the U.S, Office of Management and Budget
Circular No. A-4 guidance [46]. When presenting a single value or a ratio (e.g., health-to-electricity cost
ratio) if applicable, we use the midrange of the Jow and high estimates provided by COBRA.

A.1 Estimation of 2030 Baseline Emissions

For estimates in 2030, COBRA provides data for county-level populatidn, health incidence, and valuation,
but the baseline emissions are missing [46]. Thus, we estimate the 2030 baseline emission by extrapolating
the data for 2016, 2023, and 2028 provided by COBRA. Specifically, we consider three different extrapolation
methods as foliows.

« Linear: For cach pollutant type (e.gg., PMys, SOz, and NOy) at each source, we apply a linear model
y = a -t 41, where i is the year, to fit the 2016, 2023, and 2028 values and use the lincar model to estimate
the 2030 value. We also calculate the coefficient of determination, or R? score for each linear model. If B* is
less than 0.5, we set the predicted 2030 value equal to the 2028 value. In addition, if the value is missing for
a pollutant type at a source for any of the three years (2016, 2023, and 2028), we directly use the 2028 value
as the 2030 value.

« Exponential: The exponential extrapolation method is similar to the linear method. When the model
y = a- {1+ r) shows an exponentially decreasing trend from 2016 to 2028 (i.c., r < (), we apply the model
to estimate the 2030 valuc, Nonctheless, when the trend from 2016 to 2028 is increasing (i.c., + > 0), we
roll back to a linear model for conservative estimates to avoid over-estimates resulting from an exponential
model.

s Unchanged: We directly apply the 2028 baseline emission data to 2030,

We show in Table 4 and Table 5 the estimated total baseline emissions of air pollutants for electricity
generation and on-road traffic in 2030 using dilferent extrapolation methods. We also show the baseline
emissions for 2016, 2023, and 2028 as provided by COBRA [46]. By reducing a state’s on-road emissions to
zero in COBRA, we obtain the corresponding public heaith cost in that state.

Table 4: LS. clectricity generation bascline emissions from 2016 to 2030

Year Electricity Generallon Emisston (Metric Ton)
NOx £ TNIS VOC
R 57541 | TSGII7 A | UIGRY | 300076
ritzal 711746593 7I79.25 TT10§78.22 KERHIEE]
F028 6954953 | 79300701 | 11027940 | 3484671
2030 (Linear) G82541.75 | 726267.77 | 11932610 | 3690377
TR (Expanential) | 707RAR63 | 75128861 | V20R7D.35 | A7488.37

On-road emissions arc categorized as the “Highway Vehicles” sector in COBRA and include both tailpipe
exhaust and tire and brake wear. Thus, following the EPA and U.S. Department of Transportation classifi-
cation [22,91], PMax resulting from road dust is not counted as emissions of highway vehicles in our study.
If the PMy s from paved road dust (categorized as "Miscellaneous — Other Fugitive Dust —+ Paved Roads”
in COBRA) is considered, California is still projected to have the highest state-wide public health cost of
on-road vehicles among all the U.S, states in 2030. For example, by assuming exponential extrapolation and
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Table 5: U.S. and California on-road baseline emissions from 2016 lo 2030

.S, On-road Emission (Mciric Ton) Caltfornia On-road Eimisston (Mctrle Ton)
Year ST PMIY VOC NOx SOZ TRZ5 Voo
2016 ZRLE, WERE36 1 1680217 | 202127.66 | 143807 | 1019726 | B9N8Z.60
2023 42383 | 11325417 65742.16 Y96965.92 98095.76 1280.27 SLHLRS JRIRINY]
2028 TI3036984 | 1061637 | 5345543 758040 8657330 | 115427 | 827627 | 4458645
2030 (Linear) MBS0 | 610Z8H JUSEES 515981.16 5256036 | 10971 33840.83
2630 (Exponential) | 92597164 900944 4797663 653737.61 GERRTI7 | 112236 353635

including $7.6 billion attributed to paved road dust PM; 5, California is projected to have a total health cost of
$23.9 billion. Nonetheless, even by including paved road dust PMy s, our finding still indicates that the pub-
lic health cost of U.S. data centers (e.g., $21.5 bilfion based on McKinsey's projection) could be comparable
to that of California’s on-road emissions in 2030,

A.2 Evaluation of Al's Public Health Impact (Scope 2)

Due to the limited data available for scope-1 and scope-3 impacts, we mainly focus on the scope-2 health
impacts unless otherwise specified. Thus, the locations of emission sources depend on the power plants
supplying electricity to data centers. To evaluate the public health impacts of USS. data centers, we consider
both average attribution and marginal attribution methods for 2023. Nonetheless, since it is difficult, if
not impossible, to obtain the marginal emission rate without knowing the actual dispatch decisions for the
future, we only use the average attribution method for 2030. The two attribution methods are described as
follows,

» Average attribution: We first calculate the total data center electricity consumption epc and the over-
all clectricity consumption (including non-data center loads) ¢potw within each electricity region. The US.
electricity grid Is divided into 14 regions following the AVoided Emissions and geneRation Tool (AVERT,
the latest version v4.3 as of October 2024) provided by the EPA [70]. We use the state-level electricity con-
sumption data for 2023 and 2030 provided by EPRI (5], and distribute state-leve} electricity consumption
to relevant electricity regions following the state-to-region electricity apportionment used by AVERT. Note
that the actual state-to-region electricity apportionment in 2030 may vary from the assumption in AVERT,
Thus, we also consider an alternative apportionment lo further evaluate the public health impact of U.S.
data centers. Specifically, we consider a state-fevel electricity apportionment scenario in which each state is
viewed as an electricity region. The evaluation results are shown in Appendix C and further reinforce our
key finding that the health impact of U.S. data centers could rival that of on-road emisslons in some of the
largest U.S. states such as California.

We calculate the percentage 5% = 22< of the data center electricity consumption with respect to the
overal} electricity consumption for each electricity region. The relationship between the health impact and
emission reduction in COBRA is approximately linear. Thus, we apply a reduction by 2% to the baseline
emissions of all the power plants within the respective electricity region in COBRA and estimate the corre-
sponding county-level health impacts, including health outcomes and costs.

When assessing the health impact of generative Al training, we follow the same approach, except for
changing the total data center electricity consumption to the AT model training electricity consumption.

Assuming a medium growth rate, McKinsey projects that the U.S. data center electricity demand (ex-
cluding cryptocurrency) will reach 606 TWh, or 11.7% of the U.S. national electricity demand, in 2030 [4].
When using McKinsey's projection, we only use its projected percentage of 11.7%. That is, we consider
the EPRI's projection of non-data center loads and scale up the EPRI's projection of data center electricity
demand to match the percentage of 11.7%. As a result, the 2030 U.S, data center electricity demand is 519
TWh, instead of 606 TWh, in our study under McKinsey's projection. Nonetheless, as we apply a reduction
by w% to the baseline emissions in COBRA, what matters most is the percentage, rather than the absolute
electricity consumption by data centers.

» Marginal attribution: We only consider marginal attribution for 2023. Specifically, we use the state-
level data center electricity consumption {5] and run AVERT to caleulate the resulling county-level marginal
air pollutant reduction {70]. AVERT allows a maximum of 15% electricity reduction within an electricity
region during each hour. For regions where the data center electricity demand exceeds the 15% reduction
threshold for certain hours in 2023, we cap the reduction at 15%, swhich results in a conservative estimate
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(i.e., the actual health tmpact of data centers is slightly higher). The county-level emission reduction data
provided by AVERT is then applied to COBRA to estimate the county-level health outcomes and costs.

Electricity price. When estimating the electricity cost for data centers in 2023 and 2030, we use the state-
level average price for industrial users in [92]. The projected U.S. nominal electricity price for industrial
users remains nearly the same from 2023 to 2030 (24.96 $/MMBtu in 2023 vs. 23.04 $/MMBTu in 2030) in
the baseline case per the E1A’s Energy Outlook 2023 [39]. Thus, our estimated health-to-electricity cost ratio
will be even higher if we further adjust inflation. Similarly, to estimate the household clectricity bills, we use
the state-level average price for residential users and county-level average household electricity consumption
in [92].

Location-based emission. There are two types of scope-2 carbon emissions associated with electricity
consumption: location-based and market-based [10]. Specifically, location-based carbon emissions refer
to the physical carbon emissions attributed to an electricity consumer connected to the power grid, while
market-based carbon emissions are net emissions after applying reductions due to contractual arrangements
and other credits (e.g., renewable energy credits). In this paper, similar to location-based carbon emissions
commonly studied in the literature [8], we focus on criteria air poliutants for AT data centers without con-
sidering market-based pollution reduction mechanisms.

While data centers, including large technology companies, often use various credits to reduce their
market-based carbon emissions [10], it is Jikely less effective to apply this practice to mitigate the public
health impact. The reason is that, unlike carbon emissions that have a similar effect on climate change re-
gardless of the emission source locations, the public health impact of criteria air pollutants heavily depends
on the location of the emission source. For example, the public health impact of using grid power from a
populated region may not be effectively mitigated by the renewable energy credits generated elsewhere.

A.3 Public Health Impact of Baclkup Generators in Virginia

Virginia has issued a total of 174 air quality permits for data center backup generators as of December 1,
2024 [56}]. More than half of the data center sites are within Loudoun County. We collect a dataset of the
alr quality permits: permits issued before January 1, 2023, from [57], and permits issued between January
1, 2023 and December 1, 2024, from [56]. The total permitted site-level annual emission limits are approxi-
mately 13,000 tons of NO, 1,400 tons of VOCs, 50 tons of SOz, and 600 tons of PM; s, all in US. short tons.
By assuming that the actual emissions are 10% of the permitted level, the data centers in Virginia could
already cause approximately 14,000 asthma symptom cases and 13-19 deaths each year, among other health
implications, resulting in a total annual public health burden of $220-300 million, including $190-260 mil-
Hon incurred in Virginia, West Virginia, Maryland, Pennsylvania, New York, New Jersey, Delaware, and
Washington D.C., as estimated by COBRA under the “Fuel Combustion: Industrial” sector.

A4 Public Health Impact of a Semiconductor Facility

We consider a semiconductor manufacturing facility located in Ocotillo, a neighborhood in Chandler, Ari-
zona [93]. By averaging the rolling 12-month air polutant emission levels listed in the recent air quality
monitoring report (as of October, 2024) [18]), we obtain the annual emissions as follows: 150.4 tons of NOj,
82.7 tons of VOCs, 1.1 tons of SOz, and 28.9 tons of PMys. By applying these on-site emissions to COBRA
under the “Other Industrial Processes” sector, we obtain a total public health cost of $14-21 miflion. Ad-
ditionally, the total annual energy consumption by the facility is 2074.88 million kWh as of Q2, 2024 [93].
Assuming 84.2% of the energy comes from the electricity based on the company’s global average [94], we
obtain the facility’s annual electricity consumption as 1746.63 million kWh. By using the average attribu-
ton method, we further obtain an estimated health cost of $12-17 miliion associated with the electricity
consumption. Thus, the total health cost of the facility is $26-39 million.

By relocating the facility from Chandler, Arizona, to a planned site in Licking County, Ohio, and as-
suming the same emission level and electricity consumption, we can obtain the total health cost of $94-156
million, including $23-36 million attributed to direct on-site emissions and $70-120 million attributed to
electricity consumption.

A.5 Energy Consumption for Training a Generative Al Model

We consider Llama-3.1 as an example generative Al model. According to the model card {44], the train-
ing process of Llama-3.1 {including 8B, 70B, and 405B) utilizes a cumulative of 39.3 million GPU hours of
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computation on H100-80GB hardware, and each GPU has a thermal design power of 700 watts. Considering
Meta’s 2023 PUE of 1.08 {45] and excluding the non-GPU ovethead for servers, we estimate the total tralning
energy consumption as approximately 30 GWh.

A.6 Average Emission for Each LA-NYC Round Trip by Car

We use the 2023 national average emission rate for light-duty vehicles (gasoline) provided by the US. De-
partment of Transportation {91]. The emission rate accounts for tailpipe exhaust, tire wear and brake wear.
Specifically, the average PMy s emission rate is 0.008 grams/mile (including 0.004 grams/mile for exhaust,
0.003 grams/mile for brake wear, and 0,001 grams/miie for tire wear), and the average NO, emission rate
is 0.199 grams/mile for exhaust. We see that half of PMa s for light-duty vehicles comes from brake and tire
wear (0.004 gram/miles), which are also produced by other types of vehicles including electric vehicles.
The distance for a round-trip between Los Angeles, California, and New York City, New York, is about 5,580
miles. Thus, the average auto emissions for each LA-NYC round trip are estimated as 44.64 grams of PM, 5
and 1110.42 grams of NO..

B Public Health Impact of U.S. Data Centers in 2023

We show in Fig. 6 the state-wide data center electricity consumption in 2023 [5]. It can be seen that Virginia,
Texas and California have the highest data center electricity consumption in 2023.

Next, we show in Fig. 7 the county-level per-household (scope-2) health cost caused by the US. data
centers in 2023. We see that the health cost is highly disproportionately distributed across different counties
and communities, particularly affecting low-income comununities. The ratio of the highest county-level per-
household health cost to the lowest cost is more than 100. Crucially, all the top-10 counties in the U.S. have
lower median household incomes than the national median value. Moreover, by comparing Fig. 7 and Fig. 6,
we see that many of the hardest-hit communities do not have large data centers or directly receive economic
benefits from Al data centers such as tax revenues. We also show in Fig. 8 the county-level total health costs
of US. data centers in 2023,
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Figure 6: State-level electricity consiumption of U.S. dafa centers in 2023 [5].

We show in Fig, 9 the per-household health cost of U.S. data centers in 2023 by considering the marginal
attribution method. The health cost using marginal attribution means the public health burden resulting
from the additional loads of the U.S. data centers connected to the grid in 2023. In other words, if the U.S.
data centers had been powered using off-grid sources (e.g., on-site renewables) in 2023, the per-household
public health benefit would be valued at up to $319 and the total public health benefit would be $7.6 billion.

C Public Health Impact of U.S. Data Centers in 2030 (State-level Elec-
tricity Apportionment)

AVERT [70] divides the U.S. electricity grid into 14 regions. Since the actual state-to-region electricity appor-
tionment in 2030 may vary from the assumption in AVERT, we now consider an alternative apportionment

24




100 1.0 gy
0.8
b I 0.6
g 8
2 0.4
S
&
0.2
0.0 met
° 10° 10! 102 10%
Health Cost (US §)
{n) Per-liouschold health cost map (b) CDF of county-tevel per-lonsehold health cost
Per-hnusehold Months of County-to-nalion
State | Counly | yeaih Cost ($) | Glecteicity Bills | Income Ratio
Wy Marion 306.0 (244.9,367.1 22(18,2.6) 08
WV T Mason | 2594 (2356, 363.1 22 (17,26) 071
[8]3] Meigs | 2944 (2201, 3688, 24(15,30) [
OH Gollta 289.9 (2165, 363.3 33(17.29) 0.74
WV Marslall {72806 (215.6, 345.7, 20(16,2.5) 077
WV Taylor 266.6 (315.4,317.7) 15(16,2.3) 0.740
TA Fayelte [ 256.1 (2009, 3103 18(13,27) 7T
PR Greaw | 3354 {200.2, 2905, 17 (14,20} [k
WV _ | Brooke | 2357 (177.9,2935 17(13,27) [
WV Tackson | 1271 (1833, 2709, 16 (13, 20) 073

(e) Top-10 countics by per-houschald health cost
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Table 6: The public health cost of ULS. dala centers in 2030. "1 denotes McKinsey'’s projection wnder a medium
growth rate (excluding energy consumption for cryptocurrency) [4). State-level electricity apportiomnent.

Frnapoliton | Freacd | ety | Werioty Cot — FelikGon | ol Beaimy | feritovscbols Wi ar TR Oarord
Metbod Growth awyy (bl §) * bilfen §) Cost HeohCont (§) £ Bectniciny B Meatih Cog
o TR (3] ERX 2] [STEReT) ) HFOTEILH ) 031 (03039) 353
MRl |3 EY AT (X, EANX]) 20 o) {RANTE
Unchenged 3 Tl Fix] 239 (30, 0] {6F, 7128 T $aT 1134, 758 [XROR KA
W-T“L;}\—F_q N LSS ¢/ S & K W A A
Skl 3 35 &0 (68, 1110 115, 183] I8 (76s, 1054, | s (asaan) 2]
T [y 53 378 G, 1) { =L EES YIRS S M TR W
TR pizz; Y E’g: u,,%l ks TR UL S [ e I SO S,
tinear 25 EEY) T (R0, 6] LT BTN T PR XD S
% 74 S A DR SO W 2011 L 37 TRGIS m.q 31 N S
V¥ 3193 753 B e, 11| 1. - 018 (o, 1303 | B74(086,09%) (2
T T30 X ‘ﬁ"t‘u SSUSTON M 2 o (AN FEEY B33 {1, 0 ) i
Thdoste HILE] [& LTS R TI E A = ErARR\S XY [EFUSZ R KLS i)
Fapostl [R5 oy SR 2] RARLE) < D L ST TR ) I . —
L FOF My [2R137) 2] LIk RS T TELEN L% T
Siehnem ) Hs S, 1160y | 183 (11, 145) % 1008 (VA TN | BT (0,057 e

25

00 1.0
80 0.8
S oF w0
| i 8
0 g 0.4
“4a0Z
b
0.2
20
0.0f =
° 10° 107 107 10?

Health Cost (US $}

(a) Per-houschold health cost nap

(b) COF of cornmty-tevel per-honschold ealth cost

Per-househoid Moths of
Health Cost (8) | Electricity Bills
2.

County-to-nation

State § County Incume Ratlo

wy Mason 3198 (2RRI, 381K 3 (19,24 071
Oll Melgs 308.5 (235.2, 381.8 25(19,3.1 62
[¢]] Gallia 299.6 (3391, 3702, 24 (1.8, 3.0 074
WV Brooke | 2853 (2133, 357.2] 21(15,26, 0.69
WV T Marsholl 2707 {304.2, 3373 20 (15,24 077
PA Tayetic | 2543 (1955, 312.8; 18(14,22 ¥

WV | Macon | 2528
WV | Jackeon | 2522
WV | {lancock | 2520
WV Roane | 2914

, JIE T8 (14,53) REN
77 18(15,21 073
KA} 1B(14,22 [i¥zd
}, 286.1); 17{1.4,27 55

(e) Top-10 conntics by per-houschold health cost

Figure 9: The county-level per-houschold health cost of ULS. data conters in 2023. Marginal attribution.

to further evaluate the public health impact of US. data centers in 2030. Specifically, we hypothesize a
state-level electricity apportionment scenario in which each state is viewed as an electricity region (i.e., data
centers are puwered by in-state electricity). We show the results in Table 6, Fig. 10, and Fig. 11. While the
actual values slightly differ from those in Section 4.2, the key message remains the same: the health impact
of U.S. data centers could rival that of on-road emissions in some of the Jargest U.S. states such as Califor-
nia, and disproportionately affect low-income communities. As we consider in-slate electricity to posver
data centers, 9 out of 10 most-effected counties in terms of the per-household public health burden are in
Virginia which has the largest concentration of data centers [5).
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Figure 10: The health costs of LLS. data centers and top-3 state on-road emissions fron 2016 to 2030 bused on different
extrapolations for 2030 bascline ¢ (State-level electricity apportionnent.)

26



Lneatian Fearsen Normalized IQR Normallred 1)
Conclation ["Foallh | Caitxn | JS308 Ratio | Thelth | Carbon 28 Raig

Linndusn Couniy, VA 1427 .15 Y06T 241 [XET 159 2277
Caatvs] O, OFF 375 CALTI T Z41 U137 0% prs]
The Dalles, TR 032 BY57 0059 4614 Fia O 536
Dotiglas County, A 75 CCTN A 531 079 Iz KETH
Motigomary County, T 1760 033 | 47 k3] % R Ei
Topiion, NI 7% 17 [ 5] T I AT
Shorey Covunty, NV LR A .02 LS TR L0
HilEs Coundy, TX 0474 196 G082 2B ¥} X Xl
Thirkcley Cannty, 5C 416 L1 005 2900 A G A0
Councll Fus, 1A [E5] AT A 23] E ] E[H
Thendursor, NV 058F 175 wns7 33 163 a EY
Taekoom County, AL u7ey IR 8467 A3 1195 104 EFXD)
vy, NG 20 W76 [0 2332 XL T EEL
Wiayes Cuiniy, UK A 05| 0an ZHF X 0777

(a} Per-loweschold heafthy cost nap

0.8

0.6

CDF

0.4

0.2

0.0

e

10°

() COF of comty-fevel per-household health cost

10! 102 10°
Health Cost {US $)

State Counly I'er-household Months of County-to-nalion
Health Cost (5) | Electricity Bills | Income Ratio

VA Emporia City R824 (6033, 1H18) | 62(34,61) [5]
— VA | Colonial Heights City_|_#61d (316.2, 8063} 1 5 0.6
NS Trunswick €217 (I115, 6006, k3 [
VA Greensvilic 071 (3083, %1 1 5]
Tiopewell City E3R (4669, 7407 + 057
tlanover 93.7 (155.7, 7316, 1 139
A Tancaster 5603 (465.9, 6947 R 087
A Fefershurg, Cily. 560 (4393, 7.7 11 0.62
NI Melenn 5657 (351.1, 6802 1E o7
VA Toesss SRAT (977,794 i [

Figure 11: The county-level per-liousehold health cost of ULS. data centers in 2030 based on exponential extrapolation
of baseline emissions (McKinsey's mediuns-growth forecast). The income data is based on He 2018-2022 American

{¢) Top-T counties by per-househiohd heatth cost

Conununity Survey 5-year estimaies provided by [83]. (State-l

27

L electricity apporti .}

Table 7: Correlation analysis of warginal carbon emissions and health impacis for Google’s LS. data center locations
between October 1, 2023, and Septentber 30, 2024 [71). According to the region classification of WattTime [95], the
fwo dnta centlers in Storey County, NV, and Henderson, NV, belong to the same poiwer grid region, and so do those in
Jackson County, AL, and Monigonery County, TN.

D  Health-informed Al

We now provide additional results to highlight the importance of health-informed AL

D.1  Correlation Analysis of Marginal Carbon Intensity and Health Impact for Google’s
U.S. Data Center Locations

In addition to the analysis in Section 5, we study the scope-2 marginal carbon intensity and public health
cost for each unit of electricily generation across Google’s U.S. data center between October 1, 2023, and
Seplember 30, 2024, provided by [71]. The health cost signal provided by [71] only considers mortality from
PMy, while COBRA includes a varicty of health outcomes including asthma, lung cancer, and mortality
from Ozone, among others [22]. The thne granularity for data collection is 5 minutes.

We present the results Table 7, further conﬁrming that carbon intensities and health jmpacts are not
always aligned and that health impacts vary more significantly than carbon intensities in almost all the
locations. This suggests that, by judiciously accounting for and exploiting the spatial-temporal diversity of
health costs, Al data centers can be optimized to minimize adverse public heaith impacts while supporting
sustainability goals.

D.2 Location-dependent Public Health Impact

We now show the locativn-dependent public health impacts of two technology companies based on Google's
and Meta’s US. data center locations in 2023, excluding their leased colocation data centers svhose locations
are proprictary. Due to the fack of information about the per-data center electricity consumption, we uni-
formly distribute Google's North America electricity consumption over its U.S. data center locations based
on Google’s latest sustainability report {10]. Meta discloses its per-location electricity usage [45]. We con-
stder criteria air poliutants without accounting for renewable energy credits these two companles apply
to offset their grid electricity consumption (see “Lovation-based emission” in Appendix A.2). As a conse-
quence, aithough we consider the U.S. data center locations of Google and Meta, our results should not be
interpreted as a quantitative evaluation of these two specific companies’ actual public health impacts. We
also emphasize that our goal is to highlight the locational dependency of public health impacts and to mo-
tivate the need for health-informed siting of data centers. In our results, we refer to Google and Meta as
Company A and Company B, respectively, to avoid potential misunderstandings.

We first see from Table 8 that while the two companies have different public health costs due to their dif-
ferent electrlcity consumption, their health-to-electricity cost ratios are similar at the national level. Nonethe-
less, we notice from Fig. 12 that the two companies have significant differences in terms of the per-household
health cost distribution and most-affected counties. This is primarily due to the two companies' different
data center locations, and highlights the locational dependency of public health impacts. That is, unlike
carbon emissions that have a similar effect on climate change regardless of the emission source locations,
the public health hnpact of criteria air pollutants heavily depends on the location of the emission source.

28



Talle 8: The public health costs based gn fwa tlechnology companies” ULS. data center electricity consumption in 2023,

Company Tectricly | Feelricily Cost HealthCost [ % of Heciiiclly | Ter-Hovsehald
{. (vh) {bililon 3) {bitlion $) Cost Health Cost (5}
A TAversge) LX) i 06V (047,078 5% 15 033,55
A {Marginal] ] T 697 (075, 10 T £3 (63,55
B {Average, 0% LX) IO, 038 Iy 1728,33
B{Marginal) L3 (5] 0.53 (041,085, 7 EXTEERN)
>u1s > =15

(a} Per-honschold health cost (Conipmiy A) (b) Per-hauschold honlth cost (Compauy B)
1.0 e 1.0 s
0.8 0.8
L 0,6 Y9,
H B 0.6
Vo4 v 0.4
0.2 0.2
0.0 |z 0.0 | smmanmeret
10° 10t 102 10° 10 102
Health Cost (US $) Health Cost (US $)
{€) COF of per-houselold health cost (Company A) {d) COF of per-honsehold heatth cost {Company B)
Per-houschold | County-to-nation Per-household | Counly-to-nation
State County Health Cost (S Income Ratia State | County | yeatth Cost (§) | Income Ratio
™ Marion 338272, 40 L3 TX_ | Maron | 211 {17.0,25.3) (2]
VA Mecklenburg 23.7 (19.3, 28, ] X Cass 133 (104, 16.3) .72
VA Hallfax 235 (18.8, 38, 065 WV Marion 124 (9.3, 150) 80
NC Dersun 23.5(194,37. 0.81 GA Pickens 124 (101, 146, 197
VA Martinsville Clty | 2235 (18,6, 26.5, 052 WV T Marshall 1219.2, 149, .77
VA Danvlile Ty 217 (173,360 155 WV | Mazan 120 (94, .4 071
24 Cass 213(165, 158 [%7] TX Gregg T2 (08, 145, [EH]
[ Tickens A (173, A3 W97 TX_ [ Tiartison | 12.0 (3.7, 143 (X2
Wwv Marion 205 (163,244, 080 X Morris 120 (933, W6, 0.6
VA Henry T4 (159, 4% AT 1] Callla 149 (84,149, 2]

(e) Top-10 countics by per-hauschold health cost (Company Ay {f) Top-10 connties by per-household health cost (Company B)

Figure 12: The county-level per-household healtlt cost of two companies in 2023. The income data is based on the
2018-2022 American Community Survey 5-year estimates provided by [83). Average aftribution.

Thus, technology companies should account for public health impacts when deciding where they build data
centers, where they get electricity for their data centers, and where they install renewables in order to best
mitigate the adverse health effects while promoting equity.
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