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Thank you, Representative O’Connor and committee members, for convening today’s public 
hearing on Assembly Bill (AB) 228. Wisconsin is succeeding—now—in attracting billions of 
dollars in private investments from some of the biggest technology companies in the world. This 
bill aims to reinforce that success.

Less than two years ago, the Legislature created a sales tax exemption for materials used to 
construct, operate or renovate industrial-scale data centers—the physical locations where 
computing and networking equipment reside to store and process the data that makes the Internet 
work. Our goal was to attract some of the valuable private investment that was already gaining 
momentum in other Midwestern states.

That policy decision is already bearing fruit. Two enormous data centers are under construction 
already in Wisconsin (including one in the district that I represent); more are being planned. All 
of these projects far exceed the minimum capital investment required to qualify for the tax 
exemption, and it seems that the demand for these facilities in our nation and in our region will 
only increase with time.

Current law provides sensible limits on local governments’ options to create tax incremental 
districts (TIDs) to host economic development, including a cap on the total property value that 
may be included within any municipality’s TIDs. But these data center projects dwarf most 
other development projects. Increasingly, the Legislature has been asked to grant exceptions to 
the “12 percent rule” that limits the creation of new TIDs; in all likelihood, the Legislature will 
be asked every single time to waive the 12 percent rule when new opportunities arise for our 
communities to attract one of these massive data center investments.

AB 228 proposes to waive the 12 percent rule—categorically, instead of amending the statute 
one data center at a time—for the creation of any TID whose sole purpose is to support a 
qualified data center. Under the bill, communities may compete to attract these lucrative projects 
without worrying about whether the Legislature eventually will vote to waive the general 12 
percent limit. Communities will not miss out on time-sensitive opportunities to land these 
projects if the Legislature cannot act promptly enough to authorize an exception. And if a 
community does attract a data center investment, its existence will not unduly prevent that 
community from using tax incremental financing as usual for all other, routine development.

Thank you for your time and consideration of AB 228.

Capitol Office: P.O. Box 8952 • Madison, WI 53708-8952 
(608) 237-9137 • Toll-Free: (888) 534-0037 • Fax: (608) 282-3637 • Rep.Born@legis.wi.gov

mailto:Rep.Born@legis.wi.gov


Phone: (608) 266-5660 
Toll-free: (888) 291-3489 

Sen.Jagler@legis.wi.gov
Room 415 South 

P.O. Box 7882 
Madison, WI53707-7882

Testimony on Assembly Bill 228

Thank you Chairman O'Connor and members of the committee for hearing our 
testimony today. Last session, the Legislature took the step to welcome data 
centers to our state by creating a sales tax exemption for materials used to 
construct, operate or renovate large-scale facilities. Thanks to this tax exemption 
and Wisconsin being a great state to operate and welcome business, we are 
fortunate to have several of these data centers being built.

However, as several of them are getting ready to break ground, we are realizing 
that their scope and cost far outsize our current tools for economic development. 
Specifically, these projects far exceed the 12% cap on the value of a tax 
incremental districts (TID). As more communities are welcoming these data 
centers, bills are being drafted to exempt these data centers from the 12% cap.

While this limit on TID is well meaning, it didn't anticipate these new investments. 
Since data centers are already defined in statute for the sales tax exemptions, it 
allows us to create a narrow exemption to the 12% rule for the entire state. 
Assembly Bill 228 will allow for one bill to cover all of these data centers and 
hopefully welcome more in the future.

This is our opportunity to welcome this advanced technology to our communities 
and push our economy into the next generation.

Thank you for considering this bill and we welcome any questions you may have.
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Good afternoon members of the committee. My name is Abby Novinska Loisand I am here 
express support for sustainable economic development that creates family-supporting jobs. 
However, Imust also raise critical concerns regarding the environmental and community impacts 
of data centers, particularly in light of the proposed legislation regarding tax incremental tT;-FSx) 
financing-districts for these facilities.

While data centers may sound like an enticing economic benefit, we are witnessing a growing 
cautionary tale from communities that have welcomed these developments. The implications for 
community health and the environment cannot be overlooked.
I’d like to share five main concerns:

First, let’s address noise pollution. Data centers require constant cooling, which often involves 
large fans that generate significant noise. While the noise levels may technically comply with 
local ordinances, the constant hum can be disruptive and unexpected for nearby residents. 
Prolonged exposure to noise pollution has been linked to health issues such as hypertension 
and increased cortisol levels, which can have serious long-term effects on community 
well-being.

Second, we must consider water demands. Data centers consume vast amounts of water for 
cooling purposes. Communities are increasingly concerned about the chemicals that may 
remain in the cooling water when it is discharged into local waterways. Not only does this raise 
questions about the potential contamination of our water supply and the health risks associated 
with it, but iWeu&4tee impact water costs and overextraction at a time when clean and fresh 
water is growing further out of reach for many Wisconsin families and buisnesses due to other 
pollutants.

Third, we cannot ignore the direct air pollution associated with these facilities. Many data 
centers are equipped with backup energy systems, including large diesel generators. For 
instance, Microsoft has requested permits for over 220 large diesel generators across its 
campuses in Wisconsin. Diesel exhaust is classified as a group 1 carcinogen and is known to 
contribute to heart and lung diseases, as well as cancer. This is particularly alarming in regions 
like Racine and Kenosha, which are already struggling with poor air quality and high rates of 
asthma-related asthma-related emergency visits and hospitalizations. With the recent upgrades 
to serious nonattainment status for ozone pollution in these areas, the introduction of more data 
centers could further compromise the health of an already vulnerable population.

Notably, this pollution can also limit economic opportunities for other businesses that may be 
looking to expand in Wisconsin and grow into that area.

Fourth, we must address the energy burden that these data centers impose on local ^
communities. The energy demands^f data centers are astronomical, with estimates for slme 1 

' centers larger than pow^^g‘^Q^!fi@^mes.Theseenergy needs will fall on local utilities, and 
ultimately, on the residents of Wisconsin if new infrastructure is built. Many Wisconinites are 
already upset and struggling from high energy costs that are rising every year and they should



not be subsidizing multi-biilion corporations. This energy burden is a public health issue, with 
many families already having to choose between rent, electricity bills, healthy foods, and 
medicines. And the financial implications of meeting these demands will be felt for decades, 
even if the data center or other industries change because of the way our utility rate system 
operates.

And number five, let’s consider the broader climate costs. The energy consumption, hewt- 
prodijetioivwatef-i3sager^4^otlytixm^sQcj3tedjMilbjdata-c^otef8 will set us behind other 
states and key scientific goals for a liveable planet. Proposals for new fossil-gas--dependent 
energy production to meet these demands will lock Wisconsin into a .future,of high toxic.air 
pollution and greenhouse gas emissionsKMany other states are currently drafting policies to 
ensure that any new data center builds in their state are built responsibility, with an eye for clean 
energy and a future where communities can thrive. We should slow down and follow their lead 
to ensure that Wisconsin does not get left behind. ------- i.:.. - -

Finally, we all want good, family sustaining jobs, but analysis of builds in other states has shown 
that most Al and data-centers hire few long-term employees. ThereTorerthere^are^33iTi5Tial'Nx 
re^-OTTS1ra_qijestIorrwhetheFThese~^pd^ls~are-even-econemlc-opp0rtunityThat~cffmTrttin-itLes 

canttenefit from:-a dt-^etopm..^dr Wwoh- A sx j„c nS-^ -fansYCo-c?: ml
15 CT^,P ITS ft- " ■ - TSj and Osr economy ujWidp d£.pexd If

areas ot the country-wire re they have been C'&bstFtfeted-in case you
ywc,p O-ca w’/A.m ~ 3 %+vavc, Art nCoi. CCP’S ^ Pad-

Indonclusion, I urge you to carefully impacts outlined today. SusISifidfeTe!development must 
prioritize Wisconsin jobs, Wisconsin families, and the health and well-being of our communities. 
Thank you for your time and consideration.
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The Unpaid Toll: Quantifying the Public Health Impact of AI

Yudin Han Zhifeng Wu Pcngfei Li Adam Wierman Shaolei Ren1
UC Riverside UC Riverside UC. Riverside Collech UC Riverside

Abstract
The surging demand for AI has led to a rapid expansion of energy-intensive data centers, impacting the envi­
ronment through escalating carbon emissions and water consumption. While significant attention has been 
paid to Al's growing environmental footprint, the public health burden, a hidden toll of AI, has been largely 
overlooked. Specifically, Al's lifecycle, from chip manufacturing to data center operation, significantly de­
grades air quality through emissions of criteria air pollutants such as fine particulate matter, substantially 
impacting public health. This paper introduces a methodology to model pollutant emissions across Al's 
lifecycle, quantifying the public health impacts. Our findings reveal that training an AT model of the Llama-
3.1 scale can produce air pollutants equivalent to more than 10,000 round trips by car between Los Angeles 
and New York City. The total public health burden of U.S. data centers in 2030 is valued at up to more than 
$20 billion per year, double that of U.S. coai-based steelmaking and comparable to that of on-road emissions 
of California. Further, the public health costs unevenly Impact ecpnomically-disadvantaged communities, 
where the per-household health burden could be 200x more than that in less-impacted communities. We 
recommend adopting a standard reporting protocol for criteria air pollutants and the public health costs of 
AT, paying attention to all impacted communities, and implementing health-informed AI to mitigate adverse 
effects while promoting public health equity.

1 Introduction
The rise of artificial intelligence (AI) has numerous potentials to play a transformative role in address- 
ing grand societal challenges, including air quality and public health [1,2]. For example, by integrating 
multimodal data from various sources, AI can provide effective tools and actionable insights for pandemic 
preparedness, disease prevention, healthcare optimization, and air quality management [1,3]. However, 
the surging demand for AI — particularly generative AI, as exemplified by the recent popularity of large 
language models (LLMs) ■— has driven a rapid increase in computational needs, fueling the unprecedented 
expansion of energy-intensive AI data centers. According to McKinsey projections, under a medium-growth 
scenario [4], the U.S. data centers are anticipated to account for 11.7% of national electricity consumption 
in 2030, a substantial increase from their current share of less than 4% in 2023.

The growing electricity demand of AI data centers has not only created significant stress on power grid 
stability [5,6], but also increasingly impacts the environment through escalating carbon emissions [7,8] and 
water consumption [9]. These environmental impacts are driven primarily by the "expansion of AI products 
and services," as recently acknowledged by Google in its latest sustainability report [10]. To mitigate the 
challenges posed to both power grids and the environment, a range of strategies have been explored, includ­
ing grid-integrated data centers [6,11], energy-efficient hardware and software [12-14], and the adoption 
of carbon-aware and water-efficient computing practices [9,15-17], among others.
The hidden toll of AI. While the environmental footprint of AI has garnered attention, the public health 
burden, a hidden toll of AI, has been largely overlooked. Across its entire lifecycle — from chip manufactur­
ing to data center operation — AI contributes substantially to air quality degradation and public health costs 
through the emission of various criteria air pollutants. These include fine particulate matter (PM2.5, parti­
cles measuring 2.5 micrometers or smaller in diameter that can penetrate deep into lungs and cause serious 
health effects), sulfur dioxide (SO2), and nitrogen dioxide (NO?). Concretely, the AI hardware manufac­
turing process [18], electricity generation from fossil fuels to power AI data centers, and the maintenance 
and usage of diesel backup generators to ensure continuous AI data center operation all produce signifi­
cant amounts of criteria air pollutants. Moreover, the distinct spatial-temporal heterogeneities of emission

1 YucHn I Ian and Zhifeng Wu contributed equally and are listed alphabetically.
Corresponding authors: Adam Wierman (ndamwCVoltech.edu) and ShnoieJ Ren (slinotel©ucr.edu)
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sources suggest that focusing solely on reducing Al's carbon footprints may v\ot minimize its emissions of 
criteria air pollutants or the resulting public health impacts (Section 5).

Exposure to criteria air pollutants is directly and causally linked to various adverse health outcomes,2 
including premature mortality, lung cancer, asthma, heart attacks, cardiovascular diseases, strokes, and 
even cognitive decline, especially for the elderly and vulnerable individuals with pre-existing conditions 
[20-23]. Moreover, even short-term (hours lo days) PM23 exposure is harmful and deadly, accounting for 
approximately 1 million premature deaths per year from 2000 to 2019 and representing 2% of total global 
deaths [24].

Globally, 4.2 million deaths were attributed to ambient (i.e., outdoor) air pollution in 2019 [25]. Aii- 
pollution has become the second highest risk factor for noncommunicable diseases [26]. Notably, according 
to the latest Global Burden of Disease report [27], along with high blood pressure and high blood sugar, 
ambient particulate matter is placed among the leading risk factors for disease burden globally in every 
socio-demographic group.

While the U.S. has generally better air quality than many other countries, 4 in 10 people in the U.S. .still 
live with unhealthy levels of air pollution, according to the "State of the Air 2024" report published by the 
American Lung Association [28]. In 2019 (the latest year of data provided by the World Health Organization, 
or WHO, as of November 2024), an estimate 0/ 93,886 deaths in the U.S. were attributed to ambient air 
pollution [29]. In fact, even compliance with the U.S. Environmental Protection Agency (EPA) air quality 
standards does not necessarily guarantee healthy air that meets the WHO guidelines. Concretely, the EPA's 
recently tightened primary standard for PM2.5 sets an annual average limit of 9 /1.7/m1, considerably higher 
than the WHO's recommended level of 5//y/W* [30,31]. In addition, the EPA projects that 53 U.S. counties, 
including 23 in the most populous state of California, would fail to meet the revised national annua! PM23 
standard In 2032 [32],

Further, criteria air pollutants are not confined to the immediate vicinity of their emission sources; they 
can travel hundreds of miles through a dispersion process (i.e., cross-state air pollution) [33,34], impacting 
public health across vast regions — pollutants from the 2024 Canadian wildfires significantly degraded air 
quality across much of the U.S. and reached ns far as Mexico and Europe [35].

importantly, along with transportation and industrial activities, electricity generation is a major con­
tributor to ambient air pollution with substantial public health impacts [26,36,37]. For example, a recent 
study [38] shows that, between 1999 and 2020, a total of 460,000 excess deaths were attributed to PM2.5 gen­
erated by coal-fired power plants alone in the U.S. As liighlighted by the U.S. EPA [36], despite years of 
progress, "fossil fuel-based power plants remain a leading source of air, water, and land pollution that af­
fects communities nationwide." Moreover, according to the U.S. Energy Information Administration (EIA) 
projection [39], the coal consumption by the electricity sector in 2050 will still be about 30% of the 2024 level 
in the baseline reference case, and the number will exceed 50% in the high zero-carbon technology cost case. 
Indeed, the growing energy demands of AI are already delaying the decommissioning of coal-fired power 
plants and Increasing fossil-fuel plants in the U.S. as well as around the world [6,40,41].

The public health outcomes of AI due to its emission of criteria air pollutants lead to various losses, 
such as hospitalizations, medication usage, emergency room visits, school loss days, and lost workdays, 
Moreover, these losses can be further quantified in economic costs based on epidemiology and economics 
research for the corresponding health endpoints [22,42]. In contrast, the environmental impacts of AI, e.g., 
carbon emission from fossil fuels and water consumption for data center cooling, often do not cause the 
same immediate health impacts. For instance, while anthropogenic carbon emissions could also pose risks to 
public health, such impacts are often second- or third-order effects through long-term climate change which 
can then threaten the human well-being by affecting the food people eat and facilitating the spreading of 
pests, among others [43]. Nonetheless, despite their immediate and tangible impacts on public health, the 
criteria air pollutants of AI have remained mtder the radar, entirely omitted from today's AI risk assessments 
and sustainability reports [10,44,45].
Quantifying the public health costs of AI. In this paper, we uncover and quantify the hidden public 
health impacts of AI. We introduce a general methodology to model the emission of criteria air pollutants

AVhllo wo focus on public health, wo note that the impacts of criteria air pollutants extend beyond humans and include harms to 
environmentally sensitive areas, such ns some national parks and wilderness mens which, classified ns “Class 1 areas" under the Clean 
Air Act. require special air protection (19].
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associated with A! tasks across three distinct scopes: emissions from the maintenance and operation of 
backup generators (Scope 1), emissions from fossil fuel combustion for electricity generation (Scope 2), and 
emissions resulting from the manufacturing of server hardware (Scope 3). Then, we analyze the dispersion 
of criteria air pollutants and the resulting public health impacts across different regions.

Our main results (Section 4) focus on the scope-2 health impacts of U.S. data centers and, specifically, 
LLM training.3 Using ihe reduced-complexity modeling looi COBRA (CO-Benefits Risk Assessment) pro­
vided by the EPA [46], our screening analysis demonstrates that driven by the growing demand for Al, 
the U.S. data centers could contribute to, among others, approximately 600,000 asthma symptom cases and 
1,300 premature deaths in 2030, exceeding 1/3 of asthma deaths in the U.S. each year [47]. The overall public 
health costs could reach more than $20 bilJion, double that of the U.S. coal-based steelmaking industry [48], 
and rival or even top those of on-road emissions of the largest U.S. states such as California with ~35 mil­
lion registered vehicles [49]. Moreover, depending on the location, training an AI model of the Llnma-3.1 
scale can produce an amount of air pollutants equivalent to driving a car for more than 10,000 round trips 
between Los Angeles and New York City (LA-NYC), resulting in a health cost that even exceeds 120% of 
the training electricity cost.

Critically, the health costs are unevenly distributed across counties and communities, disproportionately 
affecting low-income counties (e.g., Meigs County, Ohio) where the per-household health burden could be 
equivalent to nearly 8 months of electricity bills and more than 200x compared to that in other counties.

In addition, to highlight the importance of scope-1 and scope-3 health impacts, we consider data center 
backup generators in Virginia (Scope 1) and semiconductor manufacturing plants in Arizona and Ohio 
(Scope 3). Our analysis shows that, assuming the actual emissions are only 10% of Ihe permitted level, 
the data center backup generators registered in Virginia (mostly in Loudoun, Prince William, and Fairfax) 
could already cause 14,00(1 asthma symptom cases among other health outcomes and a total public health 
burden of $220-300 million per year, impacting residents in multiple surrounding states and ns far as Florida 
(Section 2.2.1). If these data centers emit air pollutants at the maximum permitted level, the total public 
health cost will become 10-fold and reach $2.2-3.0 billion per year. The scope-3 health impact of AI is also 
substantial. For example, just a single semiconductor facility in Arizona can cause an annual public health 
cost of $26-39 million, with $14-21 million attributed to the facility's on-site emissions of criteria air pollutants 
(Section 2.2.2). Furthermore, relocating the same facility to a planned site in Ohio could almost quadruple 
the public health cost to $94-156 million, with $23-36 million resulting from on-site emissions.

Finally, we provide recommendations to address the increasing public health impact of AI (Section 5). 
Specifically, we recommend technology companies adopt a standard reporting protocol for criteria air pol­
lutants and public health impacts in their AI model cards and sustainability reports, implement health- 
informed Al to proactively minimize the adverse health effects of AI data centers, pay attention to all im­
pacted communities, and prioritize reducing the health impact on disadvantaged communities to promote 
public health equity.

To summarize, our study sheds light on and quantifies the overlooked public health impact of AL It 
can inform the public, policymakers, and technology companies in conducting a more comprehensive cost- 
benefit analysis. We also urge further research to comprehensively address the public health implications 
when developing powerful and truly responsible AI in the future, ensuring that the growth of AI does not 
exacerbate Ihe health burden or outweigh the potential benefits Al can provide to improve public health.

2 Background on the Air Quality Impact of AI
This section presents an overview of AI's impact on air quality and contribution to criteria air pollutants 
throughout its lifecycle, beginning with background on criteria air pollutants and U.S. air quality policies.

2.1 Criteria Air Pollutants
Criteria air pollutants, including PM2.5, SO2 and NO2, ore n group 0/ airborne contaminants that are emitted 
from various sources such as industrial activities and vehicle emissions. The direct emission of PM2.5 is called

5Our study focuses on the 48 contiguous U5. states plus Washington D.C. because the EPA data does not include other regions [«Jfij. 
if located In countries with higher population densities or less strict air quality standards, the same Al task and dala centers would 
likely contribute to significantly more deaths and other adverse health effects. We recommend further research on Ihe public health 
Impact 0/ Al outside the U.S.
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primary PM2.5, while precursor pollutants such as S02, NO„ and VOCs, can form secondary PMi 5 and/or 
ozones [50]. Tlie.se air pollutants can travel a long distance (a.k.a. cross-state air pollution), posing direct 
and significant risks to public health over large areas, particularly for vulnerable populations including the 
elderly and individuals with respiratory conditions [33,34].

Long-term exposure to PM25, even at a low level, are directly linked to numerous health outcomes, 
including premature mortality, heart attacks, asthma, stroke, lung cancer, and even cognitive decline [21,22]. 
These health effects result in various losses, such as hospitalizations, medication usage, emergency room 
visits, school loss days, and lost workdays, which can be further quantified in economic costs based on 
public health research for various health endpoints [42]. In addition, short-term (hours to days) PM25 
exposure is also dangerous, contributing to approximately 1 million premature deaths per year globally 
from 2000 to 2019 [24].

Under the Clean Air Act, the U.S. EPA is authorized to regulate the emission levels of criteria air pollu­
tants, reducing concentrations to comply with the National Ambient Air Quality Standards (NAAQS) [51]. 
For example, the NAAQS primary standards set the annual average PMjj concentration at 9/ty/n>:i and 
the 98-th percentile of 1-hour daily maximum NO2 concentration at 100 parts per billion by volume, both 
counted over three years [31], In addition, state and local governments may set additional regulations on 
criteria air pollutants to strengthen or reinforce national standards [52].

While CO2 is broadly classified by the EPA as an air pollutant following the U.S. Supreme Court ruling 
in 2007 [53] and contributes to long-term climate change, it often does not cause the same immediate health 
impacts as criteria pollutants. In the U.S., CO2 and other greenhouse gases are subject to different EPA 
regulations from those for criteria air pollutants. Thus, for the sake of presentation in this paper, we use "air 
pollutants" to solely refer to criteria air pollutants wherever applicable.

2.2 AI's Contribution to Air Pollutants
To understand the impact of Al on air quality, we focus on the three scopes over which Al contributes to 
criteria air pollutants ns well as other toxic materials. The scoping definition in this paper parallels the 
well-established greenhouse gas protocol [54].
2.2.1 Scope 1
Tine scope-1 public health impact of AI primarily comes from the emission of operating on-site backup 
generators. Data centers are mission-critical facilities that are designed to operate with high availability 
and uptime guarantees. As n result, to maintain operation during emergencies such as grid outages, Al 
data centers require highly reliable backup power sources [10,45]. Diesel generators are known to emit 
significant amounts of air pollutants and even hazardous emissions during operation. For example, they 
emit 200-600 times more NO* than new or controlled existing natural gns-fired power plants for each unit 
of electricity produced [55]. Nonetheless, there is limited experience with cleaner backup alternatives that 
can provide comparable reliability in real-world settings, as highlighted by the U.S. Department of Energy 
in its recent recommendations regarding Al data center infrastructures [6}. Consequently, Al data centers, 
including those newly built by major technology companies, primarily depend on on-site diesel generators 
for backup power [6,10,45,56]. For example, in northern Virginia (mostly in Loudoun, Prince William, 
and Fairfax), the number of permits for data center diesel generators has increased by about 7D7« since 2023 
compared to the total number of permits issued between 2000 and 2022 [56].

While diesel generators need to comply with air quality regulations and typically do not operate over 
extended periods of time, regular maintenance and testing are essential to ensure their operational reliabil­
ity. In addition, capacity redundancy is typically followed for diesel generator installations to ensure high 
availability [58]. Thus, diesel generators represent a major source 0/ on-site air pollutants for data centers 
and pose a significant health risk to the public [59]. For instance, the total permitted annual emission limits 
for data centers in northern Virginia arc approximately 13,000 tons of NOx, 1,400 tons of VOCs, 50 tons of 
SO2, and 600 tons of PM2.5, all in U.S. short tons. Assuming that the actual emissions are only 10% of the per­
mitted level, these backup generators could already cause 14,000 asthma symptom cases and 13-19 deaths 
each year among other health implications, resulting in a total annual public health burden of $220-300 mil­
lion throughout the U.S. This includes $190-260 million in Virginia, West Virginia, Maryland, Pennsylvania, 
Delaware, New jersey. New York, and Washington D.C. We show the county-level health cost and the top-10 
counties in Figure 1, while deferring the details of calculations to Appendix A.3.
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Figure 1: The county-level lohil scope-1 health cost of data center backup generators operated in Virginia (mostly in 
Loudoun County, Fairfax County, and Prince William County) [57]. The backup generators are assumed to emit air 
pollutants at 10% of the permitted levels per year. The total annual public health cost is $220-300 million, including 
$190-260 million incurred in Virginia, West Virginia, Maryland, Pennsylvania, New York, New Jersey, Delaware, and 
Washington D.C. (a) Counly-level health cost in Virginia, West Virginia, Maryland, Pennsylvania, New York, Neiv 
Jersey, Delaware, and Washington D.C. Conn lies with data centers are marked in orange, except for Loudoun County 
(marked in yellow), (b) CDF of the county-level cost, (c) Top-10 comities by the total health cost.

Moreover, due to power grid capacity constraints in many U.S. states, AI data centers are increasingly 
pressured to vary their loads subject to the grid's operating conditions, i.e., grid-integrated data centers 
[6,60]. This trend may necessitate extended reliance on backup generators, e.g., possibly 15 days per year 
[6]. Such prolonged usage of diesel genera tors could substantially elevate AI's scope-1 air pollution, creating 
even higher public health costs. Concretely, if the backup generators in northern Virginia emit air pollutants 
at Ihe maximum permitted, level, the total public health cost could reach $2.2-3.Q billion per year.

What further adds to the public health threat is that many data center generators in a region may operate 
simultaneously for demand response during grid capacity shortages, potentially resulting in a short-term 
spike is\ PM2.5 and NO* emissions that can be particularly harmful [6,24,31].
2.2.2 Scope 2
While technology companies have started implementing various initiatives —such as purchasing renewable 
energy credits and nuclear power from small modular reactors [5,10,61] — to lower their (market-based) 
carbon emissions, the vast majority of U.S. data centers remain directly powered by local power grids with 
a substantial portion of fossil fuel-based energy sources [10]. Thus, just as AI is accountable for scope-2 
carbon emissions, it also contributes to scope-2 air pollution through its electricity usage.

The combustion of fossil fuels for electricity production is a major emitter of criteria air pollutants, re­
leasing large amounts of PM2.5, SO2, NOx, VOCs, and others.4 Critically, the growing energy demands of 
AI are already delaying the decommissioning of coal-fired power plants and increasing fossil-fuel plants in 
the U.S. and other countries [6,40]. For example, in addition to keeping 2,099 MW coal generation capacity 
until 2039 (more than 80% of the 2024 level), Virginia Electric and Power Company plans to install 5,934 
MW gas-fired plants to meet the growing energy demand driven by AI data centers [41]. At the national 
level, per the EIA's projection, [39], the 2050 natural gas consumption for U.S. electricity generation will 
be about 80% of the 2024 level in the baseline reference case, and even exceed the 2024 level by 20% if the 
zero-carbon technology cost is high; for coal consumption by Ihe electricily sector in 2050, the numbers will 
also be considerably high, about 307o and over 507.. of the 2024 level in the baseline reference case and in the 
high zero-carbon technology cost case, respectively. These projections were published by the EIA at the very 
beginning of the generative Al boom In early 2023. More recently, It has been reported that AI data centers 
could even be primarily powered by coal power plants in some countries [40]. As a result, AI's scope-2 air 
pollution is expected to remain at a high level for a substantially long time into the future.

We also note that the practice of using various credits to offset scope-2 carbon emissions [10] may not be

4 Wet cooling towers, including those used by data centers \9,10J and carbon-free nuclear ptnver plants, rely on water evaporation 
for bent rejection and produce i’Mj_s due In spray drift droplets {62,63]. Nonetheless, because of limited data available, we exclude 
the cooling tower PMjj; emission from our analysis unless other specified.
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effective for mitigating thescopc-2 public health impact. The reason is that the public health impact of using 
grid electricity is highly location-dependent, e.g., the impact in a populated region may not be mitigated by 
renewable energy generated elsewhere.
2.2.3 Scope 3
The surging demand for AI necessitates large quantities of computational hardware, including graphics 
processing units (GFUs), thus intensifying the supply chain requirements [64]. However, semiconduc­
tor manufacturing generates various criteria air pollutants, wastewater, toxic materials, and hazardous air 
emissions [18]. Moreover, the energy-intensive nature of semiconductor production further contributes to 
pollutants from power plants. Combined with other pollution sources such as transportation and electronic 
waste recycling [65], the supply chain activities form a large portion of AI's scope-3 impact on public health.

Although semiconductor manufacturing facilities are subject to air quality regulations [66], they still 
pose significant risks, affecting populations across large regions. Maricopa County, AZ, has been an EPA- 
deslgnated non-attainment area for several years due to its failures to meet federal air quality standards [67], 
The establishment of multiple semiconductor facilities in such areas could further exacerbate air quality 
issues. In 2023-2024, the estimated annual public health impact of a single semiconductor facility was $26- 
39 million, with $14-21 million attributed to direct on-site emissions of air pollutants from the facility, based 
on COBRA estimates [18,46]. Moreover, relocating the facility to a planned site in Licking County, Ohio, 
could nearly quadruple public health costs to $94-156 million, with $23-36 million resulting from direct on­
site emissions. This increase is partly due to Ohio's weather conditions and higher reliance on coal-based 
power [68]. The details of calculations are available in Appendix A.4. Importantly, (he global demand for 
Al chips in 2030 is projected to be tens of times of tire overall production capacity of this single facility [69], 
further magnifying the overall scopc-3 public health impact of AI. It is also worth noting that additional 
pollutants, including hazardous air pollutants like hydrogen fluoride, may further elevate public health 
costs but are not included in this analysis.

3 Quantifying the Public Health Impact of AI
To quantify the public health impact of Al, we present a general methodology that quantifies AI's criteria air 
pollutants at the emission source, models its dispersed air pollutants at different receptors (i.e., destination 
regions), and finally obtains the public health impact and cost at each receptor.

For an AI task (e.g., Al model training), we consider M types of criteria air pollutants, N receptor regions 
of interest (e.g., all the U.S. counties), U types of public health impacts (e.g., mortality, asthma symptoms, 
school loss days, etc.). We use p' = (/>f,-• • ,plf) and pj.‘ = (/>]._,,••• •/'],*/) denote the quantities for M 
types of air pollutants attributed to the task at the emission source and at the receptor 1, respectively, for 
i = l, • • • , Ar. Additionally, we use hi — (/t,.i. • • • ,/t,\«) and c,- = (cu, • • • .c,.u) to denote the Incidences 
and economic costs associated with H types of health impacts at receptor i, respectively, for i = 1, - • • . /V. 
With a slight abuse of notations, we reuse these symbols when modeling AI's public health impacts across 
the three different scopes.

3.1 Criteria Air Pollutants at the Source
We first model AI's criteria air pollutants at the source across the three different scopes in Section 2.2.
3.1.1 Scope 1
On-site backup diesel generators are sized based on the data center power capacity and routinely tested 
to ensure a high availability of the entire data center. Tints, the overall scope-1 air pollutants should be 
attributed to each computing task based on its power allocation and duration. Suppose that the overall 
scope-1 emission by an Al data center under consideration is p* = (/>][, • • • for A/ types of air pollutants,
over a timespan of T (e.g., one year). Considering an Al task that is allocated a fraction of x 6 (0, i] of 
the overall data center power capacity and lasts for a duration of T, we express the scope-1 air pollutants 
attributed to the AI task as

P* " V '. (1)

which attributes the overall emission /T to the task in proportion to Us allocated power and duration.
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3.1.2 Scope 2
AI's scope-2 air pollutants come from its usage of electricity generated from fossil fuels. Suppose that the 
power grid serving the Al data center has an emission rate of 7 = (-)i, •• • , 7a/)for./U types of air pollutants to 
produce each unit of electricity. In practice, the power grid consists of multiple interconnected power plants 
to supply electricity to many customers over a wide area (e.g., n balancing area [70]). Thus, similar to carbon 
footprint accounting [71], the air pollutant emission rate 7 can be calculated based on either the weighted 
average emission rate of all the power plants (i.e., 7 = where 7a. and />* are the emission rate and
electricity generation of the power plant k) or the emission rate of the marginal power plant (i.e., the power 
plant dispatched in response to the next electricity demand increment), which are referred to as average 
emission rate or marginal emission rate, respectively. The average emission represents a proportional share 
of the overall air pollutant emission by an electricity consumer, while the marginal emission is useful for 
quantifying the additionality of air pollutants due to a consumer's electricity usage.

Suppose that the electricity consumption by the Al task is including the data center overhead captured 
by the power usage effectiveness. Then, we can write the scope-2 air pollutants as

K =o-7. (2)

which is either based on either average attribution or marginal attribution. While the marginal emission is 
typically associated with a single mnrginal power plant, the average emission is spread across all the inter­
connected power plants within a wide area such as a power balancing area [70,71]. Thus, when considering 
the average attribution method, we split the energy consumption coverall the power plants in proportion to 
their contributions to the grid's supply and calculate the corresponding per-plant emission. In other words, 
each involved power plant is an individual pollution source, and the air pollutant emission at the k-th power 
plant is )>l = a • ^77 • 7a, where /»/, is the electricity generation of the fr-lh power plant.

Since both the average and marginal air pollutant emission rates vary over time and locations io meet the 
supply-demand balance, we can also refine the calculation of scope-2 air pollutants in (2) by considering 
the summation of air pollutants over multiple time slots over the Al task's duration.
3.1.3 Scope 3
Following the attribution method for scope-3 carbon emission and water consumption [9,13], we attribute 
the Al hardware's air pollutants during the manufacturing process to a specific task based on the task du­
ration. Specifically, let the Al hardware's expected lifespan be 7’o and the Al task lasts a duration of T. 
Considering that the M types of air pollutants for manufacturing the Al hardware are p„ = (pg,, • • • ./$ A,) 
and excluding other miscellaneous pollutants (e.g., transportation), we obtain AI's scope-3 air pollutants as

!'* = Jr • Pi[■ (3)
i I)

As an Al server cluster includes multiple hardware components (e.g., GPU and CPU) manufactured in 
different locations, we apply (3) to estimate the scope-3 air pollutants for each component manufactured in 
a different location.

3.2 Air Quality Dispersion Modeling
Once emitted from their sources, criteria air pollutants can travel long distances, impacting multiple states 
along their paths. Unlike carbon emissions that have a similar effect on climate change regardless of the 
emission source locations, the public health impact of criteria air pollutants heavily depends on the location 
of the emission source. Generally, the closer a receptor is to the source, the greater the air quality impact. 
Furthermore, the dispersion of air pollutants is influenced by meteorological conditions, such as wind speed 
and direction.

The movement of air pollutants can be modeled using mathematical equations to simulate the atmo­
spheric processes governing the dispersion, known as dispersion modeling. By incorporating emission data 
and meteorological inputs, dispersion modeling can predict pollutant concentrations at selected receptor lo­
cations [72]. We consider a general dispersion model (p\, ■ ■ • ,/>]v) = Da(p’,)l which yields the amount of 
M types of air pollutants p'- = {p'ul>- • • ,/>]'A,) at the receptor region i = 1. • • • , /V. The parameter 0 cap­
tures the geographical conditions, emission source characteristics (e.g., height), and meteorological data if
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applicable [73]. We apply the dispersion model to each scope of air pollutants (Section 3.1) to estimate the 
corresponding pollutant concentrations at receptor regions.

In practice, many dispersion modeling tools are available, including AERMOD, CTDMPLUS, PCAPS and 
JnMAP with a reduced complexity [22,72,74,75]. For example, PCAPS (Pattern Constructed Air Pollution 
Surfaces), an advanced reduced-complexity model that provides representations of both primarily emit­
ted PM2.S and secondarily formed PM23 and ozone, is used in COBRA ns a quick assessment of otherwise 
lengthy iterations and simulations of various pollution scenarios in terms of the annual average PM23 and 
seasonal average maximum daily average fl-hour ozone [22,75]. Even compared with stnte-of-the-scicnce 
photochemical grid models, PCAPS provides similar prediction accuracies and can realistically capture the 
change in air pollution due to changing emissions (75). More specifically, for electric power sectors and 
on-road/highway vehicle sectors (the two sectors we consider in Section 4), the prediction results of PCAPS 
compare very well with photochemical model predictions, with Pearson correlation coefficients of U.92 and 
0.94, respectively [22,75].

3.3 Converting Health Outcomes to Economic Costs
By assessing pollutant levels = (/>{',. • • • ,/>yAA) and population size at each receptor region i, we can 
estimate the incidences of health outcomes /t,- = • • • , A;,w) and the corresponding public health cost
c,- = (cf.i, • • • The relations between p'- and hi and between A,- and c, can be established based on
epidemiology research [22]. For example, the premature mortality rate can be modeled as a log-linear 
function in terms of the PM75 level [23].

Further, by summing up the economic costs, we obtain quantitative estimates of the public health burden 
at both regional and national levels. It is important to note that the public health cost is not necessarily an 
out-of-pocket expense incurred by each individual, but rather reflects the estimated economic burden on a 
population to mitigate the adv erse effects of pollutants within a specific region. Therefore, it is a quantitative 
scalar measure of the public health impact resulting from a particular pollutant-producing activity.

3.4 Implementation
We now briefly describe the specific implementation we use to study the public health impact of U.S. data 
centers and Al training. The details are available in Appendix A.

Due to the limited data available for scope-1 and scope-3 impacts, wo mainly focus on the scopc-2 health 
impacts from electricity consumption. To account for future uncertainties, we use the U.S. data center elec­
tricity consumption data provided by EPR1 [5] and McKinsey [4] under various growth-rate scenarios, 
excluding cryptocurrency servers. Unless otherwise specified, we consider the average attribution method 
by default, i.e., attribute the overall health impact within an electricity region to data centers in proportion 
to their electricity consumption.

To model the air pollutant dispersion and quantify health impacts, we use the latest COBRA (Desktop 
v5.1, as of October 2024) provided by the U.S. EPA [46]. COBRA integrates reduced-complexity air dis­
persion modeling (including both primarily emitted PM2.5 and secondly formed PM2.5 and ozone [75]) 
with various concentration-response functions [22], offering a quantitative screening analysis particularly 
suitable for large-scale health impacts. The same or similar reduced-complexiiy modeling tools have been 
commonly used in the literature to examine the health impacts of various industries over a large area [74,76], 
including electric vehicles [77], bitcoin mining [78], and inter-region electricity imports [79], among oth­
ers. While each health impact model used by COBRA considers 95% confidence intervals, the high-end and 
low-end estimates provided by COBRA are based on different models instead of the 95% confidence interval 
of a single model [22J. COBRA provides data for county-level population, health incidence, and valuation 
projections in 2030, but the baseline emissions are missing [46]. Thus, to account for model uncertainties, 
we estimate the 2030 baseline emission by extrapolating the COBRA data for 2016, 2023, and 2028 using 
three extrapolation methods (Linear, Exponential, and Unchanged) as detailed in Appendix A.l.

We only consider the contiguous U.S. and simply refer lo it as the U.S. For consistency with COBRA, 
cities considered county-equivalents for census purposes are also referred to as "counties" in our paper. All 
our monetary values are for one year (or one Al task if applicable) and in 2023 U.S. dollars.
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4 Results
We now present our estimates of the public health impacts caused by the U.S. data centers in aggregate and 
by training a large generative AI model at specific locations. Our results demonstrate tliatin2030, thescope- 
2 pollutants of U.S. data centers alone could cause, among others, approximately 600,000 asthma symptom 
cases and 1,300 premature deaths, exceeding 1/3 of asthma deaths in the U.S. each year [47]. The overall 
public health costs of U.S. data centers could rival or even exceed those of on-road emissions of the largest 
U.S. states such as California. Moreover, depending on the locations, training an AI model of the Llama-3.1 
scale can produce an amount of air pollutants equivalent to driving a passenger car for more than 10,000 
LA-NYC round trips, resulting in a health cost that even exceeds 120% of the training electricity cost. Im­
portantly, the health costs ore disproportionately distributed across counties and communities, particularly 
affecting low-income counties that could experience more than 200x per-household health costs than others.

4.1 Public Health Impact of U.S. Data Centers in 2023
We first show in Table 1 the public health cost of U.S. data centers in 2023 as a reference.5 Even at the 
beginning of the generative AI boom, the U.S. data centers have already resulted in a total public health cost 
of about $5.6 billion, or $39.7 per household, in 2023. This is equivalent to 43% of the data centers' total 
electricity cost. By considering marginal attribution, the U.S. data centers' public health cost increases to 
about $7.6 billion in 2023, due to the heavy reliance on fossil fuels by many marginal generators [70]. This 
suggests that, by powering the U.S. data centers using alternative energy sources (e.g., geothermal) off the 
main grid, the U.S. could have seen a public health benefit of $7.6 billion in 2023. Additional results can 
be found in Appendix B, including county-wide total and per-household health costs that demonstrate the 
uneven distribution of health impacts across different communities.

Table h The public health cost ofU.S. data centers fn 2023.
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Mobile sources, including vehicles, marine engines, and generators, collectively account for more than 
half of the air pollutants in the U.S., with vehicles being a primary contributor [80,81]. Thus, we contextu­
alize the data centers' public health cost by comparing it to that of on-road emissions of California, which 
has about 35 million registered vehicles and exhibits the highest public health cost resulting from on-road 
emissions among all the U.S. states [46,49]. On-road emissions are categorized as Ihe "Highway Vehicles" 
sector in COBRA and include both tailpipe exhaust and tire and brake wear. The details of calculating on­
road emissions and the corresponding health costs are available in Appendix A.l. We see from Table 1 that 
in 2023, the total public health cost of U.S. data centers exceeds 1/3 of that of California's on-road emissions.

4.2 Public Health Impact of U.S. Data Centers in 2030
This section presents our projections of the public health cost of the U.S. data centers in 2030.

We first show in Fig. 2 the health costs of U.S. data centers and compare them with top-3 state on-road 
emissions in 2030 by using different extrapolation methods. More detailed results are available in Table 2. 
Due to the tightening air pollutant regulations [82], the health costs of on-road emissions — a primary 
source of air pollutants in the U.S. — have generally decreased from 2016 to 2030. In contrast, the surging 
demand for AI data centers in the U.S. has outweighed the power plant emission efficiency improvement, po­
tentially quadrupling the public health cost from 2023 to 2030. Under McKinsey's projection with a medium 
growth rate, the scope-2 pollutants of U.S. data centers in 2030 alone could cause, among others, approx­
imately 600,000 asthma symptom cases and 1,300 deaths, exceeding 1/3 of asthma deaths in the U.S. each 
year [47]. Importantly, the public health costs of U.S. data centers could rival or even exceed those of on­
road emissions of the largest U.S. states including California, suggesting a need for urgent attention to the 
health impact of U.S. data centers beyond on-road emissions.

pVVe use the "mill (low, hij»h)" format to represent the rntdranpe, low and htph estimates offered by COBRA. When presenting a 
single value or .i ratio (e.g., henlth-to-electricity cost ratio), we use the midrange by default.

y

Figure 2: The health casts of U.S. data centers and top-3 stale on-road emissions from 2016 to 2030 based oh different 
extrapolations for 2030 baseline emissions.

Table 2: The public healllt cost of U.S. data centers in 2030 based on EPRI's energy demand projection [5]. " denotes
McKinsey's projection under a medium growth rate [4].
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Next, we show in Fig. 3 the county-level per-household health cost of U.S. data centers in 2030 based on 
exponential extrapolation under McKinsey's medium-growth forecast. We see that the health cost is highly 
disproportionately distributed across different counties and communities, particularly affecting low-income 
communities. The ratio of the highest county-level per-household health cost to the lowest cost could be 
more than 200. Crucially, all Ihe lop-10 counties In the U.S. and 9 out of top-10 counties in Virginia (which 
has the largest concentration of data centers in the U.S. [4,5]) have lower median household incomes than 
the national median value. Moreover, many of the hardest-hit communities do not have large data centers or 
directly receive economic benefits from AI data centers such as tax revenues. Yet, compared to the national 
average of about 1 month of electricity bill per year, the households in these communities could each suffer 
from health impacts equivalent to up to ~8 months of their electricity bills. The high degree of disparity 
across different communities in terms of the public health cost suggests that we must examine the local and 
regional health impacts of AI data centers and improve public health equity to enable truly responsible AI.

We also show the county-level total public health cost in Fig. 4. Compared to the per-household health 
cost distribution in Fig. 3, the county-level total health cost distribution is more aligned with the population 
distribution — despite the low per-household health cost, populous counties in California have a high total 
health cost. Nonetheless, some less populous counties (e.g., Hamilton County, Ohio) near coal and/or 
natural gas power plants are still significantly impacted and even more so than those (e.g., Loudoun County, 
Virginia) that have high concentrations of data centers.

4.3 Public Health Impact of Generative AI Training
We now study the health impact of training a generative AI model. Specifically, we consider the training of 
an LLM and assume that the electricity consumption is the same ns training Llama-3.1 recently released by 
Meta [84]. While we use Meta’s Llama-3.1 training electricity consumption and U.S. data center locations 
as an example, our results should be interpreted as the estimated public health impact of training a general 
LLM with a comparable scale of Llama-3.1.

We show the results in Table 3. It can be seen that the total health cost can even exceed 120% of the
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Figure 3: The county-level pcr-lwtischold health cost ofU.S. data centers in 2030 based on exponential extrapolation 
of baseline emissions (McKinsey's medium-growth forecast). The income data is based on the 2018-2022 American 
Community Survey 5-year estimates provided by [S3].
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Figure 4: The county-level tola! health cost ofU.S. data centers in 2030 based on exponential extrapolation of baseline 
emissions (McKinsey's medium-growth forecast).

Table 3: The public health cost of training ait Al model of the Llama-3.1 scale In Mela's U.S. data centers.
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electricity cost and vary widely depending on the training data center locations. For example, the total 
health cost ip only $0.23 million in Oregon, whereas the cost will increase dramatically to $2.5 million in Iowa 
due to various factors, such as the wind direction and the pollutant emission rate for electricity generation 
[70]. Additionally, depending on the locations, training an AI model of the Llama-3.1 scale can produce an 
amount of air pollutants equivalent to more than 10,000 LA-NYC round trips by car.

The results highlight that the public health impact of Al model training is highly location-dependent. 
Combined with the spatial flexibility of model training, they suggest that AI model developers should take 
into account potential health impacts when choosing data center locations for training.

5 Our Recommendations
We provide our recommendations to address the increasing public health impact of Al.

Recommendation 1: Standardization of Reporting Protocols
Despite their immediate and tangible impacts on public health, criteria air pollutants have been entirely 
overlooked in Al model cards and sustainability reports published by technology companies [10,44,45]. 
The absence of such critical information adds substantial challenges to accurately identifying specific Al 
data centers as a key root cause of public health burdens and coufd potentially pose hidden risks to public 
health. To enhance transparency and lay the foundation for truly responsible Al, we recommend standard­
ization of reporting protocols for criteria air pollutants and the public health impacts across different regions. 
Concretely, criteria air pollutants can be categorized into three different scopes (Section 2.2), and reported 
following the greenhouse gas protocol widely adopted by technology companies [10,45,85].

Just as addressing scope-2 and scope-3 carbon emissions is important for mitigating climate change, it 
is equally crucial to address scope-2 and scope-3 criteria air pollutants to promote public health through­
out the power generation and hardware manufacturing processes in support of Al. For instance, power 
plants are dispatched based on real-time energy demand to ensure grid stability. As a result, only focusing 
on regulating scope-2 air pollutants at the power plant level fails to address the root cause — electricity 
consumption — and overlooks the potential of demand-side solutions. In contrast, recognizing scope-2 air 
pollutants and their associated public health impacts enables novel opportunities for health-informed AI, 
which, as detailed below, taps into demand-side flexibilities to holistically reduce Al's adverse public health 
impacts.

Recommendation 2: Health-informed AI
Data centers, including those operated by major technology companies [10,45], predominantly rely on grid 
electricity due to the practical challenges of installing on-site low-pollutant and low-carbon energy sources 
at scale. However, the spatial-temporal variations of scope-2 health costs (Fig. 5) open up new opportu­
nities to reduce the public health impact by exploiting the high scheduling flexibilities of AI training and 
inference workloads. For example, as further supported by EPRI's recent initiative on maximizing data cen­
ter flexibility for demand response [11], AI training can be scheduled in more than one data center, while 
multiple Af models with different resource-performance tradeoffs are often available to serve AI inference 
requests. To date, the existing data centers have mostly exploited such scheduling flexibilities for reducing 
electricity costs [86], carbon emissions [15], water consumption [87], and/or environmental inequity [88]. 
Nonetheless, the public health impact of Al significantly differs from these environmental costs or metrics.

Concretely, despite sharing some common sources (e.g., fossil fuels) with carbon emissions, the public 
health impact resulting from the dispersion of criteria air pollutants is highly dependent on the emission 
source location and only exhibits a weak correlation with carbon emissions. For example, the same quantity 
of carbon emissions generally results in the same climate change impacts regardless of the emission source; 
in contrast, criteria air pollutants have .substantially greater public health impacts if emitted in densely pop­
ulated regions compared to sparsely populated or unpopulated regions, emphasizing the importance of 
considering spatial variability.

To further confirm this point, we analyze the scope-2 marginal carbon intensity and public health cost for 
each unit of electricity generation across all the 114 U.S. regions between October 1,2023, and September 30,
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Figure 5: Analysis of marginal scope-2 carbon emission talcs ami public health costs over 114 U.S. regions between 
October 1,2023 and September 30, 2024 [71]. (a) In 110 out of the 114 U.S. ivgions (96%), the normalized IQR of 
marginal health cost is higher than that of marginal carbon intensity. (b) In 90 out of the 114 U.S. regions (79%), 
the normalized standard denm/Kiii of lienWt cost is higher than that of marginal carbon intensity. (c) Tin?
Pearson correlation between the per-region yearly average marginal health cost and carbon intensity is 0.292.

2024, provided by [71]/’ The time granularity for data collection is 5 minutes. We show In Fig. 5a the region- 
wise normalized interquartile ranges (IQR divided by the yearly average) for both public health costs and 
carbon emissions. Tire normalized IQR measures the spread of the time-varying health and carbon signals. 
Specifically, in 110 out of the 114 U.S. regions (96%), the normalized IQR of health cost is higher than that 
of the carbon intensity for each unit of electricity consumption. Moreover, the normalized IQR for carbon 
emissions is less than 0.2 in most of the regions. This implies that health costs exhibit a greater temporal 
variation than carbon emissions in 110 out of the 114 U.S. regions. Likewise, in Fig. 5b, the greater temporal 
variation of health costs is also supported by Us greater normalized standard deviation (STD divided by the 
yearly average) Ln 90 out of the 114 U.S. regions (79%). Next, we show in Fig. 5c the weak spatial correlation 
(Pearson correlation coefficient: 0.292) between the yearly average health cost and carbon intensity across 
the 114 regions. Furthermore, the normalized IQR of the health cost spatial distribution is 3.62x that of 
carbon emission spatial distribution (1.05 vs. 0.29), while the henlth-to-carbon ratio in terms of the spatial 
distribution's normalized STD is 3.37 (0.64 vs. 0.19). In other words, the health cost has a greater spatial 
spread than the carbon emission.

These findings highlight that leveraging spatial-temporal variations in a health-aware manner could sig­
nificantly reduce Al's public health costs while still maintaining climate benefits. As a result, we advocate 
for a new research direction — health-informed AI. Specifically, decisions regarding the siting of AI data 
centers and the runtime scheduling of AI tasks should explicitly address their public health impacts. By 
judiciously accounting for and exploiting the spatial-temporal diversity of health costs, AI data centers can 
be optimized to minimize adverse public health impacts while supporting sustainability goals.

Additionally, as the public health awareness serves as an effective implicit incentive (e.g., as demon­
strated in the context of residential energy conservation [89]), AI data center operators can also leverage 
this approach by informing end users about the public health impacts of their AI usage. This may help 
extract additional user-side demand flexibilities as part of the recent efforts to maximize the overall data 
center load flexibility [11].

Recommendation 3: Attention to All
Counties and communities located near AI data centers or supplying electricity to them often experience 
most significant health burdens. Nonetheless, these health impacts can extend far beyond the immedi­
ate vicinity, affecting communities hundreds of miles away [33,34]. For example, the health impact of *

*The health cost signal provided by [71 j only considers mortality from RM^j, while COBRA includes a variety of health outcomes 
including asthma, lung cancer, and mortality from ozone, among others [22).
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backup generators in northern Virginia can affect several surrounding states (Fig. la) and even reach as 
far as Florida.

While the health impact on communities where data centers operate is increasingly recognized, there 
has been very little, if any, attention paid to other impacted communities that bear substantial public health 
burdens. This disconnect leaves those communities to shoulder the public health cost of AI silently without 
receiving adequate support. To fulfill their commitment to social responsibility, we recommend technology 
companies holistically evaluate the civss-sfnfe public health burden imposed by their operations on all im­
pacted communities, when deciding where they build data centers, where they get electricity for their data 
centers, and where they install renewables.

Additionally, to quantify the health effects on impacted communities with greater accuracy for potential 
regulatory actions, we recommend further interdisciplinary research such as cross-state air quality disper­
sion, health economics, and health-informed computing.

Recommendation 4: Promoting Public Health Equity
The public health Impact of AI is highly unevenly distributed across different counties and communities in 
the U.S., often disproportionately affecting low-income communities and potentially exacerbating socioeco­
nomic inequities [37,90], For example, as shown in Table 3c and 3d, all the top-10 counties in the U S. and 
9 out of top-10 counties in Virginia have lower median household incomes than the national median value. 
The ratio of the highest county-level per-household health cost to the lowest cost could be more than 200. 
Critically, minimizing the total health cost without considering equity can even reinforce existing inequities, 
similar to the way environmental inequities have been amplified [88]. Therefore, it is imperative to address 
the substantial health impact disparities across communities and ensure that AI fosters public health equity 
rather than exacerbating inequities.

6 Conclusion
In this paper, wc uncover and quantify the overlooked public health impact of AI. Wc present a general 
methodology to model air pollutant emissions across Al's lifecycle, from chip manufacturing to data center 
operation. Our findings demonstrate that under McKinsey's projection with a medium-growth scenario, the 
U.S. data centers in 2030 could contribute to nearly 1,300 deaths annually, resulting in a public health bur­
den of more than $20 billion which could even exceed that of on-road emissions of California. Importantly, 
these public health costs are unevenly distributed and disproportionately impact low-income communities, 
where the per-household health burden could be equivalent to nearly 8 months of electricity bills and 200x 
compared to other less-impacted counties. We recommend adopting a standard reporting protocol for cri­
teria air pollutants and public health costs, paying attention to impacted communities, and implementing 
health-informed AI to mitigate these effects while promoting public health equity.

Our study provides novel insights for the public, policymakers, and technology companies, enabling a 
more comprehensive cost-benefit analysis of Al's impacts on society. We also call for further research to 
fully address the public health implications when developing powerful and responsible AI in the future. It 
is crucial to prioritize public health and ensure that the growth of AI does not exacerbate health burdens or 
negate the potential benefits AI can bring in improving public health.
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A Implementation Details
We describe the evaluation methodology used for our empirical analysis. We use the latest COBRA (Desktop 
v5.1, as of October 2024) provided by the U.S. EPA [46] to study the public health impact of U.S. data 
centers in both 2023 and 2030. While COBRA uses a reduced-complexity air quality dispersion model based 
on a source-receptor matrix for rapid evaluation, its accuracy lias been validated and the same or similar 
model has been commonly adopted in the literature for large-area air quality and health impact analysis 
[74,76,78,79]. We consider county-level air pollutant dispersion throughout the contiguous U.S., which 
Is the area currently supported by COBRA [46]. Note that cities considered county-equivalents for census 
purposes are also referred to as "counties" in COBRA. Throughout the paper, we use "county" without 
further specification.

All the monetary values are presented in the 2023 U.S. dollars unless otherwise stated. We set the dis­
count rate as 2% in COBRA as recommended by the EPA based on the U.S. Office of Management and Budget 
Circular No. A-4 guidance [46]. When presenting a single value or a ratio (e.g., hea]th-to-electricity cost 
ratio) if applicable, we use the midrange of the low and high estimates provided by COBRA.

A.l Estimation of 2030 Baseline Emissions
For estimates in 2030, COBRA provides data for county-level population, health incidence, and valuation, 
but the baseline emissions are missing [46]. Thus, we estimate the 2030 baseline emission by extrapolating 
the data for 2016,2023, and 2028 provided by COBRA. Specifically, we consider three different extrapolation 
methods as follows.

• Linear: For each pollutant type (e.g., PM2.5, SO2, and NO*) at each source, we apply a linear mode! 
y = a ■ t + ht where t is the year, to fit the 2016, 2023, and 2028 values and use the linear model to estimate 
the 2030 value. We also calculate the coefficient of determination, or R? score for each linear model. If /?- is 
less than 0.5, we set the predicted 2030 value equal to the 2028 value. In addition, if the value is missing for 
a pollutant type at a source for any of the three years (2016, 2023, and 2028), we directly use the 2028 value 
as the 2030 value.

• Exponential: The exponential extrapolation method is similar to the linear method. When the model 
y = a • (1 + r)' shows an exponentially decreasing trend from 2016 to 2028 (i.e., r < 0), we apply the model 
to estimate the 2030 value. Nonetheless, when the trend from 2016 to 2028 is increasing (i.e., r > 0), we 
roll back to a linear model for conservative estimates to avoid over-estimates resulting from an exponential 
model.

• Unchanged: We directly apply the 2028 baseline emission data to 2030.
We show In Table 4 and Table 5 the estimated total baseline emissions of air pollutants for electricity 

generation and on-road traffic in 2030 using different extrapolation methods. We also show the baseline 
emissions for 2016, 2023, and 2028 as provided by COBRA [46]. By reducing a state's on-road emissions to 
zero in COBRA, wc obtain the corresponding public health cost in that state.

Table 4: U.S. electricity generation baseline emissions/row 2 016 to 2030

Appendix

Year Electricity Generallon Emission (Melrlc Ton)
Nux SOI l‘M2.5 VUC

5777! li(k>575.4] 1369417.44 111604.62
21123 7(1746.93“ 717409.25 110870.22 34311-54
202S 695495.34 7S3137.I1 U0279.3i> 34446.71

2030 (Linear) 632541.75 726267.77 119326.10 36903.77
2030 (Exponential) 707846.63 751245.61 120870.45 37488.27

On-road emissions arc categorized as the "Highway Vehicles" sector in COBRA and include both tailpipe 
exhaust and tire and brake wear. Thus, following the EPA and U.S. Department of Transportation classifi­
cation [22,91], PM25 resulting from road dust is not counted as emissions of highway vehicles incur study. 
If the PM2.5 from paved road dust (categorized as "Miscellaneous -4 Other Fugitive Dust -» Paved Roads" 
in COBRA) is considered, California is still projected to have the highest slate-wide public health cost of 
on-road vehicles among all the U.S. states in 2030. For example, by assuming exponential extrapolation and
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Table 5: U.S. and California on-road baseline emissions from 2016 lo 2030

U.S. On-road Emission (MetricTon) California On-road Emission (Melik Ton)
Year t40x Sol l'M25 VOL \*Ox S02 t‘M2.5
2016 325*3579.05 25001-53 10682836 1680342.17 202427.66 1433.07 10197.26 89087.60
2023 15P8423A3 11325.07 65742.tr, 996965.92 98095.76 1230.27 8144.83 54141.57
2028 1130369.84 10616-37 53455.43 758508.40 86573.30 1154 27 8276.27 44586.45

2030 (Linear) 594848.10 6402.84 4055554 545983.16 5256036 1109.71 7583.01 3JS40.IJ
2030 (Exponential) 925971.64 9009.44 47978.65 653737.61 68881.37 1122.56 7910.51 38536-35

including $7.6 billion attributed to paved road dust PM2.5, California is projected to have a total health cost of 
$23.9 billion. Nonetheless, even by including paved road dust PM25, our finding still indicates that the pub­
lic health cost of U.S. data centers (o.g., $21.5 billion based on McKinsey's projection) could be comparable 
to that of California's on-road emissions in 2030.

A.2 Evaluation of AI's Public Health Impact (Scope 2)
Due to the limited data available for scope-1 and scope-3 impacts, we mainly focus on the scope-2 health 
impacts unless otherwise specified. Thus, the locations of emission sources depend on the power plants 
supplying electricity to data centers. To evaluate the public health impacts of U.S. data centers, we consider 
both average attribution and marginal attribution methods for 2023. Nonetheless, since it is difficult, if 
not impossible, to obtain the marginal emission rate without knowing the actual dispatch decisions for the 
future, we only use the average attribution method for 2030. The two attribution methods are described as 
follows.

• Average attribution: We first calculate the total data center electricity consumption cue and the over­
all electricity consumption (including non-data center loads) ctouj within each electricity region. The U.S. 
electricity grid is divided into 14 regions following the AVoided Emissions and geneRation Too! (AVERT, 
the latest version v4.3 as of October 2024) provided by the EPA [70]. We use the state-level electricity con­
sumption data for 2023 and 2030 provided by EPRI [5], and distribute state-level electricity consumption 
to relevant electricity regions following the state-to-region electricity apportionment used by AVERT. Note 
that the actual state-to-region electricity apportionment in 2030 may vary from the assumption in AVERT. 
Thus, we also consider an alternative apportionment to further evaluate the public health impact of U.S. 
data centers. Specifically, we consider a state-level electricity apportionment scenario in which each state is 
viewed as an electricity region. The evaluation results are shown in Appendix C and further reinforce our 
key finding that the health impact of U.S. data centers could rival that of on-road emissions in some of the 
largest U.S. states such as California.

We calculate the percentage :r% = of the data center electricity consumption with respect to the 
overall electricity consumption for each electricity region. The relationship between the health impact and 
emission reduction in COBRA is approximately linear. Thus, we apply a reduction by x% to the baseline 
emissions of all the power plants within the respective electricity region in COBRA and estimate the corre­
sponding county-level health impacts, including health outcomes and costs.

When assessing the health impact of generative AI training, we follow the same approach, except for 
changing the total data center electricity consumption to the AI model training electricity consumption.

Assuming a medium growth rate, Me Kinsey projects that the U.S. data center electricity demand (ex­
cluding cryptocurrency) will reach 606 TWh, or 11.7% of the U.S. national electricity demand, in 2030 [4]. 
When using McKinsey's projection, we only use its projected percentage of 11.7%. That is, we consider 
the EPRI's projection of non-data center loads and scale up the EPRI's projection of data center electricity 
demand to match the percentage of 11.7%. As a result, the 2030 U.S. data center electricity demand is 519 
TWh, instead of 606 TWh, in our study under McKinsey's projection. Nonetheless, as we apply a reduction 
by :i:% to the baseline emissions in COBRA, what matters most is the percentage, rather than the absolute 
electricity consumption by data centers.

• Marginal attribution: We only consider marginal attribution for 2023. Specifically, we use the state- 
level data center electricity consumption [5] and run AVERT to calculate the resulting county-level marginal 
air pollutant reduction [70]. AVERT allows a maximum of 15% electricity reduction within an electricity 
region during each hour. For regions where the data center electricity demand exceeds the 15% reduction 
threshold for certain hours in 2023, we cap the reduction at 15%, which results in a conservative estimate
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(i.e.f the actual health Impact of data centers is slightly higher). The county-level emission reduction data 
provided by AVERT is then applied to COBRA to estimate the county-level health outcomes and costs.

Electricity price. When estimating the electricity cost for data centers in 2023 and 2030, we use the state- 
level average price for industrial users in [92]. The projected U.S. nominal electricity price for industrial 
users remains nearly the same from 2023 to 2030 (24.96 $/MMBtu in 2023 vs. 23.04 $/MMBTu in 2030) in 
the baseline case per the ElA's Energy Outlook 2023 [39]. Thus, our estimated health-to-electricity cost ratio 
will be even higher if we further adjust inflation. Similarly, to estimate the household electricity bills, we use 
the state-level average price for residential users and county-level average household electricity consumption 
in [92],

Location-based emission. There are two types of scope-2 carbon emissions associated with electricity 
consumption: location-based and market-based [10]. Specifically, location-based carbon emissions refer 
to the physical carbon emissions attributed to an electricity consumer connected to the power grid, while 
market-based carbon emissions are net emissions after applying reductions due to contractual arrangements 
and other credits (e.g., renewable energy credits). In this paper, similar to location-based carbon emissions 
commonly studied in the literature [8], we focus on criteria air pollutants for AI data centers without con­
sidering market-based pollution reduction mechanisms.

While data centers, including large technology companies, often use various credits to reduce their 
market-based carbon emissions [10], it is likely less effective to apply this practice to mitigate the public 
health impact. The reason is that, unlike carbon emissions that have a similar effect on climate change re­
gardless of the emission source locations, the public health impact of criteria air pollutants heavily depends 
on the location of the emission source. For example, the public health Impact of using grid power from a 
populated region may not be effectively mitigated by the renewable energy credits generated elsewhere.

A.3 Public Health Impact of Backup Generators in Virginia
Virginia has issued a total of 174 air quality permits for data center backup generators as of December 1, 
2024 [56]. More than half of the data center sites are within Loudoun County. We collect a dataset of the 
air quality permits: permits issued before January 1, 2023, from [57], and permits issued between January 
1, 2023 and December 1, 2024, from [56]. The total permitted site-level annual emission limits are approxi­
mately 13,000 tons of NOs, 1,400 tons of VOCs, 50 tons of SO2, and 600 tons of PM2.5, all in U.S. short tons. 
By assuming that the actual emissions are 10% of the permitted level, the data centers in Virginia could 
already cause approximately 14,000 asthma symptom cases and 13-19 deaths each year, among other health 
implications, resulting in a total annual public health burden of $220-300 million, including $190-260 mil­
lion incurred in Virginia, West Virginia, Maryland, Pennsylvania, New York, New Jersey, Delaware, and 
Washington D.C., as estimated by COBRA under the "Fuel Combustion: Industrial" sector.

A.4 Public Health Impact of a Semiconductor Facility
We consider a semiconductor manufacturing facility located in Ocotillo, a neighborhood in Chandler, Ari­
zona [93]. By averaging the rolling 12-month air pollutant emission levels listed in the recent air quality 
monitoring report (as 0/October, 2024) [18], we obtain the annual emissions as follows: 150.4 tons of NO*, 
82.7 tons of VOCs, 1.1 tons of SO2, and 28.9 tons of PM^s. By applying these on-site emissions to COBRA 
under the "Other Industrial Processes" sector, we obtain a total public health cost of $14-21 million. Ad­
ditionally, the total annual energy consumption by the facility is 2074.88 million kWh as of Q2, 2024 [93]. 
Assuming 84.2% of the energy comes from the electricity based on the company's global average [94], we 
obtain the facility's annual electricity consumption as 1746.63 million kWh. By using the average attribu­
tion method, we further obtain an estimated health cost of $12-17 million associated with the electricity 
consumption. Tims, the total health cost of the facility is $26-39 million.

By relocating the facility from Chandler, Arizona, to a planned site in Licking County, Ohio, and as­
suming the same emission level and electricity consumption, we can obtain the total health cost of $94-156 
million, including $23-36 million attributed to direct on-site emissions and $70-120 million attributed to 
electricity consumption.

A.5 Energy Consumption for Training a Generative AI Model
We consider Llama-3.1 as an example generative AI model. According to the model card [44], the train­
ing process of Llama-3.1 (including 8B, 70B, and 405B) utilizes a cumulative of 39.3 million GPU hours of
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computation on H100-80GB hardware, and each GPU has a thermal design power of 700 watts. Considering 
Meta's 2023 PUE of 1.08 [45] and excluding the non-GPU overhead, for servers, we estimate the total training 
energy consumption as approximately 30 GWh.

A.6 Average Emission for Each LA-NYC Round Trip by Car
We use the 2023 national average emission rate for light-duty vehicles (gasoline) provided by the U.S. De­
partment of Transportation [91 ]. The emission rate accounts for tailpipe exhaust, tire wear and brake wear. 
Specifically, the average PM2.5 emission rate is 0.008 grams/mile (including 0.004 grams/mile for exhaust, 
0.003 grams/mile for brake wear, and 0.001 grams/miie for tire wear), and the average NO* emission rate 
is 0.199 grams/mile for exhaust. We see that half of PM2.5 for light-duty vehicles comes from brake and tire 
wear (0.004 gram/miles), which are also produced by other types of vehicles including electric vehicles. 
The distance for a round-trip between Los Angeles, California, and New York City, New York, is about 5,580 
miles. Thus, the average auto emissions for each LA-NYC round trip are estimated as 44.64 grams of PM2.5 
and 1110.42 grams of NOx.

B Public Health Impact of U.S. Data Centers in 2023
We show in Fig. 6 the state-wide data center electricity consumption in 2023 [5]. It can be seen that Virginia, 
Texas and California have the highest data center electricity consumption in 2023.

Next, we show in Fig. 7 the county-level per-bousehold (scope-2) health cost caused by the U.S. data 
centers in 2023. We see that the health cost is highly disproportionately distributed across different counties 
and communities, particularly affecting low-income communities. The ratio of the highest county-level per- 
household health cost to the lowest cost is more than 100. Crucially, all the top-lU counties in the U.S. have 
lower median household incomes than the national median value. Moreover, by comparing Fig. 7 and Fig. 6, 
we see that many of the hardest-hit communities do not have large data centers or directly receive economic 
benefits from AI data centers such as tax revenues. We also show in Fig. 8 the county-level total health costs 
of U.S. data centers in 2023.

(rt) Electricity coitsuntylioii mop

lltcl'ltlljr
mfti mvhj

n«!rldly
liwoVa 33 5S 01! 10

LA “->3 m MO
r.u KV LA

oh Ml (A* cur
AZ M3 AL ME pm
1A m TL 13* Sit Ml
i;,\ MS IN 1.0 Rl '102
WA 5.1? | 23 K.<
PA AK < CUJI

OR
M < tini
SE ttM
KO 3.M U53 VT

?.» VIM
’«7 cr lO>

IN an

(l») Electricity cimsttwplhui by shit? (descanting ortlcr)

Figure 6: Slate-level elech icihj consumption of U.S. data centers in 2023 [5].

We show in Fig. 9 the per-household health cost of U.S. data centers in 2023 by considering the marginal 
attribution method. The health cost using marginal attribution means the public health burden resulting 
from the additional loads of the U.S. data centers connected to the grid in 2023. In other words, if the U.S. 
data centers had been powered using off-grid sources (e.g., on-site renewables) in 2023, the per-household 
public health benefit would be valued at up to $319 and the total public health benefit would be $7.6 billion.

C Public Health Impact of U.S. Data Centers in 2030 (State-level Elec­
tricity Apportionment)

AVERT [70] divides the U.S. electricity grid into 14 regions. Since the actual state-to-region electricity appor­
tionment in 2030 may vary from the assumption in AVERT, we now consider an alternative apportionment
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(rr) Per-houschahl health coft map

Slate County Per-household 
Health Cost ($)

Months of 
Electricity Bills

County-to-nallon 
Income Ratio

WV Marion 306.0(244.9,367.1) 12 0.8,2.6) 0.80
wv Mjjwi 299.4 (235.fi, 363.1) 2.2(1.7,26) 0.71
OH Meins 294.4 (22IMI, 368.8) 2.4(1.8,30) 0.62
OH Collin 289.9(216.5,363.3) 23(1.7,2.9) 0.74
WV Marshall 280.6 (215.6,345.7) 2-00-6,2.5) 0.77
WV Taylor 266.67215.4,317.7) 1.9 (1-6,2.3) 0.70
I’A Povcttu 256.J (201.9,310.3) 1.8 (1.4,2.2) I 0.74
i’A Greene 245.4 (200.2,2905) 1.7().4,2.0) 0.53
WV Brooke 235.77177.9,293.5) 1.7(13,2.1) 0.69
wv Jackson 227.1 (183-3,270.9) 1.6(13,2.0) 0.73

(r) Top-10 counties by ivr-hausehald health cost

Figure 7: The county-lew! per-household health cost of U.S. data centers in 2023.
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(b) CDF of cotinly-leivl health cost

State County Health Cost 
(millions)

II, Cook 81.9 (55.8, 107.9)
I’A AlkRhcny 80.1 (61.1,993)
I* Harris 683 (46.4,90.2)

OH Hamilton 49.0 (37.1,60.9)
PA Philadelphia 48.1 (33.4,62.7)
Ml Wayne 46.8 (33.0,60.6)
OH <-'Tl"8a 43.1 (31.1,553)
rJV Kln#s 41.7 (26.1,573)
OH franklin 41.5 (30.3,52.7)
NY Queens 35.2 (22.5,47.8)

(c) Top-10 counties by health cast

Figttre S: The county-level health cost of U.S. data centers in 2023.

Table 6: The public health cost of l/.S. data centers in 2030. "t" denotes McKinsey's projection under a medium 
grmoth rate (excluding energy consumption far cryptocurrency) [4]. State-level electricity apportionment.
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(a) Per-househoht health cost map (b) CDF of comity-leivl per-lnwehvht health cost

Stale County Per-household 
Health Cost ($)

Moths of 
Electricity Bills

County-lo-nalion 
Income Ratio

wv Mason 319.8 (258.1,381.5) 23(1.9,28) 0.71
Oil Meigs 308.5 ( 235.2 3813) 25(1.9.3.1) 0.62
Oil Gallia 299.6 (229.0,370.2) 2.4 (lii,3.0) 0.74
WV Brooke 2853 (2133,357.2) 2.1 (IS, 26) 0.69
WV Marshall 270.7 (204.2,3373) 20(13,24) 0.77
PA Payette 2543(195.8,3128) 13(1.4,22) 0,74
WV MarUm 252.8 (I94~8,3lll.8) 1.8(1.4,22) u.s«
WV" Jackson 252.2(206.8.297.7) 1.8(13,21) 0.73
wv Hancock 252.1 (193.1,311.1) 1.8(1.4,22) 0.77
wv J Roam* 241.4 (196.8,286.0) 1.7 (1.4, 2.1) 0,55

(r) Top-W counties by ivr-hauschaUi health cast

Figure 9: The county-level per-ltousehold health cost of U.S. data centers in 2023. Marginal attribution.

to further evaluate the public health impact of U.S. data centers in 2030. Specifically, we hypothesize a 
state-level electricity apportionment scenario in which each state is viewed as an electricity region (i.e., data 
centers are powered by in-state electricity). We show the results in Table 6, Fig. 10, and Fig. 11. While the 
actual values slightly differ from those in Section 4.2, the key message remains the same: the health impact 
of U.S. data centers could rival that of on-road emissions in some of the largest U.S. states such as Califor­
nia, and disproportionately affect low-income communities. As we consider in-slate electricity to power 
data centers, 9 out of 10 most-effected counties in terms of the per-household public health burden are in 
Virginia which has the largest concentration of data centers [5j.

(rt) Uncar extrapolation (b) Exponential extrapolation (c) 2Q28-IO-203Q unchanged

Figure TO: The health costs of U.S. data centers and lop-3 state on-road emissions from 2016 to 2030 based on different 
extrapolations for 2030 baseline emissions. (Stale-level electricity apportionment.)
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(a) I'cr-ltotttchald health cort nuifi

Stale County I’er-honsehnlct 
Health Cost ($)

Months of 
Electricity Bills

County-tr»-nallon 
Income Hallo

VA Emporin City 882.6 (623.3,114 J .5) 6.2 (4.4, R.l) 0.55
vA Colonist HclRhls City 661 .-I (516.2,806.5) 4.7 (3.6,5.7) 0.96
VA Htunswkk 621.2(441#, SW.6) 4.4 (3.1,5.7) 0.70
VA Greensville 607.1 1408.1,806.1) 4.3 (2.9,3.7) 0.69
VA J Ivpcwcll CItv 6tb.8 (466.9,740.7) 43(33,5.2) 0.67
VA Harrow 693.7 (455.7, 731.6) 4.2 (3.2,5.21 139
VA Lancaster ^03 (46S.9,694.7) 4.1 (33, 4.9) 0.83
VA PcL'rslutfR City 5/6.0 (4293,722.7) 4.1 (3.0,5.1) 0.62
NO McLean 5fA.7 (451.1,680.2) 4.8(3.8,58) 1.07
VA Stt&H'l SfeU (397.7, 728.4) 4.0(23,5.1) 0.79

(c) Top-Wcounties by ptr-lwtiteiiohi health iwl

Figure 11: The county-level per-honschold health cost o/U.S. data centers in 2030 based on exponential extmpolation 
of baseline emissions (McKinsey's medium-growth forecast). The income data is based on the 2018-2022 American 
Community Survey 5-year estimates provided by [S3]. (State-level electricity apportionment.)
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Lncallnn Tenson Normalized IOH NormallrcdSlV)
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Umilunn CininlV, VA 0.427 0.158 0-065 olii 0169 " 2232-------
Uictiol Ohio. Oil 0.479 0.160 0065 2.441 0.137 0066 2064
Ihe Italics LH< 032-. 0.V57 0.099 9.614 03ift 0.103 *>246
Duiifcla* (jujiitv, CA 0.756 0307 IWt 5.418 0293 0.075 3.913
Mi'trtjcons'fv Ci’untv, IN iU39 im? 4320 0.195 0.046 •ilw
l,»pilllrai. NU 0.736 11-748 0840 0391 0.437 0.553 11.831
ShwvvC'rnmlv.NV 05.14 0.178 0.1257 3.132 AIM 0.042 40W
lUltiCmmlv. IX 0.474 0.196 0JJS2 2344 0.231 0-V.I 0041
IkrMtv County. SC 0.115 0.156 04251 29 tl o.ln§ uoh 2405

' Council t'lufl j, iA 0361 0.185 CUH U-71 0.124 0311 0415
Ucn.-tcrson, NV 0334 0.178 04)57 3.132 4HH1 4AM
Jack-am County. AL 07«> 0389 04167 4J20 U.195 0.016
Li-notr, NC 0340 11.176 U4259 22932 0.129 0046 2KOO
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Table 7: Correlation analysis of marginal carbon emissions and health impacts fin- Google's ll.S. data center locations 
between October 1, 2023, and September 30, 2024 [72]. According to the region classification ofWatlTime [95], the 
lino data renters m Stern/ County, NV, and Henderson, NV, belong to the same power grid region, and so do those, in 
Jackson County, At, and Montgomery County, TN.

D Health-informed AI
We now provide additional results to highlight the importance of health-informed Al.

D.l Correlation Analysis of Marginal Carbon Intensity and Health Impact for Google's 
U.S. Data Center Locations

In addition to the analysis in Section 5, we study the scope-2 marginal carbon intensity and public health 
cost for each unit of electricity generation across Google’s U.S. data center between October 1, 2023, and 
September 30,2024, provided by [71]. The health cost signal provided by [71] only considers mortality from 
PM2.5, while COBRA includes a vaiicty of health outcomes including asthma, lung cancer, and mortality 
from Ozone, among others [22], The time granularity for data collection is 5 minutes.

We present the results Table 7, further confirming that carbon intensities and health impacts are not 
always aligned and that health impacts vary more significantly than carbon intensities in almost all the 
locations. This suggests that, by judiciously accounting for and exploiting the spatial-temporal diversity of 
health costs, Al data centers can be optimized to minimize adverse public health impacts while supporting 
sustainability goals.

D.2 Location-dependent Public Health Impact
We now show the location-dependent public health impacts of two technology companies based on Google's 
and Meta's U.S. data center locations in 2023, excluding their leased colocation data centers whose locations 
are proprietary. Due to the lack of information about the per-data center electricity consumption, we uni­
formly distribute Google's North America electricity consumption over its U.S. data center locations based 
on Google's latest sustainability report [10]. Meta discloses its per-location electricity usage [45]. We con­
sider criteria air pollutants without accounting for renewable energy credits these two companies apply 
to offset their grid electricity consumption (see "Location-based emission" in Appendix A.2). As a conse­
quence, although we consider the U.S. data center locations of Google and Meta, our results should not be 
interpreted as a quantitative evaluation of these two specific companies' actual public health impacts. We 
also emphasize that our goal is to highlight the locational dependency of public health impacts and to mo­
tivate the need for health-informed siting of data centers. In our results, we refer to Google and Meta as 
Company A and Company B, respectively, to avoid potential misunderstandings.

We first see from Table 8 that while the two companies have different public health costs due to their dif­
ferent electricity consumption, their health-to-electricity cost ratios are similar at the national level. Nonethe­
less, we notice from Fig. 12 that the two companies have significant differences in terms of the per-household 
health cost distribution and most-affected counties. This is primarily due to the two companies' different 
data center locations, and highlights the locational dependency of public health impacts. That is, unlike 
carbon emissions that have a similar effect on climate change regardless of the emission source locations, 
the public health impact of criteria air pollutants heavily depends on the location of tire emission source.
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Table 8; The public health costs based on two technology comptmtVs' U.S. data center electricity consumption in 2023,

Company
(Allilbullon)

riciiikHy
(nvb)

rJrdricllyCnsI
(billion*)

Hrrtlh Curt
(l4Ulon$)

% of Electricity 
Cost

rtr-HouSchoIri
Health Cost (»)

A (Average) IBS 1,4 0.6.1 (IM7.0-78) 45% 45(3.4.55)
A (Marginal) IBS 1.4 0.9; (0.75,1.3') 7U7* 6.9 (5-1,8.6)
B<A>™Sc) 10-6 as «us (fur, rusl 51%
B (Marginal) 10 A as 0.53(0.0,0.66) 7t% 3.8 (2.°, 4J)

(n) Per-houscJtohi haitth cost (Compnini A) (t>) I'er-hotischchl litvllh cost (Com/vmy B)

1.0 1.0
O.B / 0.8 /

Q0’6 / D0’6 /
U 0.4 / U 0.4 /

0.2 y 0.2 y__ I;.r—B**'*
10° 101 10' 10° 101 1C

Health Cost (US $) Health Cost (US $)

(c) CDF of pcr-lwnsehoht health cost (Compmiy A) (d) CDF of ptr-honschohi health cost (Coinponi/ B)

Slate Cminly Pcr-household 
Health Cost (S)

County-to-nalion 
income Ratio State County Pcr-household 

Health Cost (S)
Connly-lo-naiinn 

Income Ratio
IX Marion 33.8 (27.2,40.4) 0.64 TX Marlon 21.1(17.0,25.3) 0.64
VA Mecklenburg 23.7(19.3,28.1) 0.68 TX Cass 133(10.4,163) 0.72
VA Halifax 23.5(18.8,28.1) 0-65 WV Marion 12.4 (9.9,15-0) 0.80
NC Person 23-5(19.4,27 6) 0.81 GA Pickens 12.4(10-1,14-6) 0.97
9a Martinsville City 22.5 (lfi.6, 263) 032 WV Marshall 12-1 (9.2,143} 0.77
VA Danville City 21.7 (173,26.1) 11.55 WV Mason 12.0 (9,4,14.6) 0.71
(X Cnss 21.2 (16.5,25.8) (1.72 TX Gregg 12.0 (9.6,143) 0.85

GA Pickens 21.1(17.3.24.9) 0.97 'IX Harrison 12.0 (V 7, 14.3) 0.84
WV Marion 20.5(163,246) 1)3(1 TX Morris 12.0 (93,14-6) 0.69
VA 1 ienrj’ 20.4 (15.9,24.8) | 038 OH Gallia 11.9 (8.9,14.9) 0.74

(?) Top-10 counties bp pcr-houschold health cost (Coiuixuiy A) (f) Toj>-lQ counties by pcr-householJ Initllh cusf (Company B)

Figure 12: The county-level pcr-household health cost of two companies in 2023. The income data is based on Hie 
2018-2022 American Community Survey 5-year estimates provided by [S3], Average attribution.

Thus, technology companies should account for public health impacts when deciding where they build data 
centers, where they get electricity for their data centers, and where they install renewables in order to best 
mitigate the adverse health effects while promoting equity.

29

I


