

MISO Update

Wisconsin Legislative Council Study Committee

December 5, 2024

Executive Summary

- The transition to a new resource fleet and more frequent extreme weather events are introducing unprecedented challenges, including uncertainty, variability and congestion.
- These trends demand innovative approaches to grid operations. As industries adopt Artificial Intelligence (AI) and Machine Learning (ML), the energy sector is leveraging these technologies to tackle grid complexities and deliver smarter, more efficient solutions.
- MISO is actively engaging with members and digital partners to explore and develop AI/ML applications across markets, operations, and transmission planning, fostering collaboration and innovation in grid management.

MISO is an independent, not-for-profit Regional Transmission Organization serving 15 U.S. states and one Canadian province

MISO's reliability footprint and regional control center locations

MISO KEY FACTS

Area Served	15 U.S. States and Manitoba, Canada	
Population Served	45 Million	
Transmission Line	77,000 Miles	
Generating Units	> 1900	
Record Demand	127.1 GW 7/20/2011	
Wind Peak	25.6 GW 1/12/2024	
Solar Peak	8 GW 10/16/2024	
	54 Transmission Owners	
Members	143 Non-transmission Owners	
Market Participants	> 500	
Market Transactions	> \$40 billion	
Carbon Reduction	Approximately 32% since 2014	

MISO has the largest geographical footprint of all Regional Transmission and Independent System Operators in North America

The accelerating pace of the energy transition and increasing extreme weather events are challenging the traditional way we operate the grid

Steeping Net Load Ramp

Winter Storm Net Uncertainty

Volatile Congestion Pattern

"Duck curve" materializing this winter with 12 GW projected solar

40GW renewable (wind + solar) at MISO with additional 45GW (mostly solar) with signed GIA

Winter storm Elliot, adequate resources projected day(s)-ahead

25GW uncertainties materialized leading into Emergency Procedures

More complex and volatile congestion

Intermittent wind and solar energy coupled with transmission or generation outages

Data and analytics strategy empowers MISO to become an intelligence driven organization while leveraging data, AI and ML capabilities

MISO DATA & ANALYTICS

Vision

Empower MISO to improve and enhance data-driven decisionmaking.

Mission

Advance enterprise strategic priorities through effective utilization of quality data.

Goal

Deliver a holistic framework to establish new ways of organizing, delivering and managing data that facilitates the best possible basis for decision-making.

Objectives

- Provide a curated environment that enables intuitive data exploration and utilization.
- Deliver a process framework to advance analytical capabilities and trusted decision-making.
- Build an enterprise culture where robust data standards are embedded and embraced.

MISO's is making significant progress in leveraging AI techniques to transform our decision making

		Production	Development	Exploration
			 Improve load and renewable forecasting 	
\mathbf{v}	Markets	 Net Uncertainty ML Models for dynamic reserves 	 Vendor switching 	
			 Forecast model/scenario ensemble 	
			 Stanford load forecasting model 	
Operations	• In Operations • O	 Interconnection chatbot Outage (return) forecasting 	Forecast historically unknowns	• Digital assistant for control room operations and intelligent logging using NLP and LLM
			Price forecast for Storage	
			state of charge optimization	
Trar Plan	Transmission Planning		 Improve Economic Base Model Key Impacts to Congestion 	 Leverage AI/ML to understand how do we manage the integration of new resources
	~			 Retiring Units Prediction

A cloud-based Uncertainty Platform is being built to automate the forecasting and net uncertainty analytics

MISO region load could grow ~60% through 2040, exacerbating existing reliability challenges and requiring additional firm, controllable resources

Source: leverages McKinsey's Global Energy Perspectives.

1. Volumetric power demand load is total downstream gross. Historical actuals are from EIA

