K = Reaction coefficient (log base e), days-1
NR 110.24(2)(a)1.b.
b. The reaction coefficient (K) must be adjusted for temperature according to the formula:
KT = K20QT-20
Where:
KT = Corrected reaction coefficient
K20 = 0.5
Q = 1.07
T = Low design temperature, °C
NR 110.24(2)(a)2.
2. The appropriate summertime and wintertime reaction coefficients for aerated lagoons designed to treat combined domestic and industrial wastewater shall be determined from laboratory or pilot studies, or from operating data of existing full scale aerated lagoons which are treating similar wastewater. The reaction coefficients developed shall be used to calculate the required detention time.
NR 110.24(2)(a)3.
3. In addition to the treatment volume calculated in subd.
1. or
2., quiescent settling zone or cell shall be provided for aerated lagoon systems. Minimum settling time shall be 6 days for surface water discharge, and 3 days for land disposal discharge.
NR 110.24(2)(a)4.
4. Aerated lagoons designed to treat combined domestic and industrial wastewater shall be provided with the means to recirculate final lagoon effluent to the first treatment cell.
NR 110.24(2)(b)1.1. Stabilization ponds may be used to treat domestic wastewater. Combined domestic and industrial wastewater may be treated in stabilization ponds only if the treatability of the industrial wastewater is demonstrated through pilot testing.
NR 110.24(2)(b)2.
2. The BOD
5 loading to any one stabilization pond may not exceed 23 kilograms per hectare (20 pounds per acre) per day.
NR 110.24(2)(b)3.
3. A minimum hydraulic detention time of 150 days at the average design flow shall be provided in the entire stabilization pond system. In accordance with s.
NR 210.06 (3) (h), a stabilization pond system which discharges to surface water, and has a hydraulic detention time of 180 days or longer at average design flow, does not require disinfection except in extenuating circumstances.
NR 110.24(3)(b)1.1. For all lagoons not sealed with a synthetic liner, a minimum separation distance of 1.25 meters (4 feet) shall be maintained between the bottom of lagoons and the highest recorded or indicated seasonal groundwater table elevation.
NR 110.24(3)(b)2.
2. For all lagoons sealed with a synthetic liner, a minimum separation distance of 60 centimeters (2 feet) shall be maintained between the bottom of the lagoon and the highest recorded or indicated seasonal groundwater table elevation.
NR 110.24(3)(c)
(c) Separation from bedrock. A minimum separation of 3 meters (10 feet) shall be maintained between the bottom of lagoons and bedrock. The department may waive this requirement on a case-by-case basis if it can be demonstrated that a lesser separation distance will not cause groundwater quality problems. Criteria which will be evaluated to waive this requirement include the depth to bedrock, the type of bedrock, the fracture condition of the bedrock, the direction of groundwater movement, the existing groundwater quality, and the downgradient uses of the groundwater.
NR 110.24(3)(d)1.1. Backhoe test pits and soil borings shall be conducted at each proposed lagoon site. Logs of the test pits and soil borings shall be submitted with the facilities plan as required in s.
NR 110.09 (8) (a). Soil boring and test pit analyses shall be conducted by an independent soil testing laboratory, a qualified engineering firm or an individual or firm which has demonstrated the capability to perform and evaluate such tests.
NR 110.24(3)(d)2.
2. Soil borings and test pits shall be used to determine subsurface soil characteristics and variability, seasonal high groundwater level and elevations, and type, nature and depth to bedrock. Soils shall be classified according to the unified soil classification system. Cross-sections using the soil boring and test pit logs shall be prepared and submitted with the facilities plan.
NR 110.24(3)(d)3.
3. Soil sampling shall be performed in accordance with ASTM D1586-08a or ASTM D1587-08.
NR 110.24(3)(d)4.
4. Soil profile descriptions shall be written for all soil test pits. The thickness in inches and the difference between each soil horizon shall be indicated for each test pit. Horizons shall be differentiated on the basis of color, texture, soil mottles or bedrock. Depth shall be measured from the ground surface and the slope at the test pit shall be indicated.
NR 110.24(3)(d)5.
5. A minimum of one soil boring per acre shall be conducted at each lagoon site. The number of test pits and borings shall be sufficient to adequately characterize the soil type and variability and delineate unsuitable soil areas in the field. The department may require additional soil borings and test pits to properly describe the site soils, bedrock or groundwater conditions.
NR 110.24(3)(d)6.
6. Each boring shall have a minimum depth of 7.6 meters (25 feet) or to bedrock.
NR 110.24(3)(e)
(e) Lagoon shape. The shape of lagoons shall be such that there are no narrow or elongated portions. Islands, peninsulas or coves will not be approved. Dikes shall be rounded at corners to minimize accumulations of floating materials. Commonwall dike construction is encouraged. Round, square or rectangular lagoons with a length not exceeding 3 times the width are recommended.
NR 110.24(3)(f)4.
4. A minimum one meter (3 feet) freeboard from operating water surface to the top of dikes shall be provided.
NR 110.24(3)(g)1.1. A minimum liquid depth of 0.6 meters (2 feet) for stabilization ponds and 1.8 meters (6 feet) for aerated lagoons shall be provided.
NR 110.24(3)(g)2.
2. Maximum water depth may not exceed 1.8 meters (6 feet) for stabilization ponds and 4.3 meters (15 feet) for aerated lagoons.
NR 110.24(4)(a)(a) General. All lagoons shall be sealed to prevent excessive exfiltration.
NR 110.24(4)(b)1.1. Loss of water from wastewater treatment or storage lagoons may not exceed 10 cubic meters per water surface hectare (1,000 gallons per acre) per day and loss of water from sludge storage or treatment lagoons or other sludge handling facilities may not exceed 5 cubic meters per sludge surface hectare (500 gallons per acre) per day.
NR 110.24(4)(b)2.
2. In circumstances where soil or groundwater characteristics, groundwater quality, or waste characteristics warrant, the department may require exfiltration rates less than 10 cubic meters per water surface hectare (1,000 gallons per acre) per day for wastewater treatment or storage lagoons.
NR 110.24(4)(c)1.1. Soil materials or synthetic liners approved by the department may be used to seal lagoons.
NR 110.24(4)(c)2.
2. Soil materials or synthetic liners used to seal lagoons shall be compatible with the wastewater characteristics.
NR 110.24(4)(d)1.1. Core samples taken to determine soil texture, grain size distribution or permeability shall be taken in accordance with ASTM D1586-08a, ASTM D1587-08, or ASTM 3550-01 (2007).
NR 110.24(4)(d)2.
2. Permeability shall be determined using a falling head permeability test. The test shall be performed at the same approximate density as the in-place field condition. Tests on remolded or undisturbed samples are acceptable.
NR 110.24(4)(d)3.
3. Sieve analyses performed to determine grain size distribution shall be performed in accordance with ASTM D422-63 (2007).
NR 110.24(4)(d)4.
4. Plasticity index shall be determined in accordance with ASTM D4318-10.
NR 110.24(4)(d)5.
5. Standard procter densities shall be determined in accordance with ASTM D698-07 e1.
NR 110.24(4)(e)
(e) Uniform construction. All lagoon seals shall be uniformly constructed across the lagoon bottom and interior dike walls. Seals shall extend up the dike wall to the berm.
NR 110.24(4)(f)1.1. Synthetic liners shall have a minimum thickness of 0.8 millimeters (30 mils).
NR 110.24(4)(f)2.
2. All synthetic liners shall be installed under the supervision of a qualified manufacturer's representative.
NR 110.24(4)(f)3.
3. Synthetic liners shall be protected by an inorganic soil layer. The soil layer shall have a minimum thickness of 30 centimeters (one foot). The soil shall be uniformly graded and free from large rocks, angular stones, soil clumps, sticks or other material which may puncture the liner. When a granular, noncohesive soil is used for the cover, a soil fabric shall be placed between the liner and the soil cover. The soil fabric shall be anchored at the dike berm.
NR 110.24(4)(f)6.
6. Riprap or other means of erosion control shall be provided to prevent exposure of the synthetic liner due to erosion of the protective soil layer.
NR 110.24(4)(f)7.
7. Prior to constructing the synthetic liner, the underlying soils shall be treated with a herbicide in accordance with manufacturers recommendations.
NR 110.24(4)(g)1.1. The permeability of soil or bentonite liners may not be greater than 1 x 10
-7 cm/sec. (2.83 x 10
-4 ft/day).
NR 110.24(4)(g)2.
2. The liner thickness shall be determined according to Darcy's equation, and shall include an appropriate safety factor for construction variability. In no case shall the liner thickness be less than the minimum values shown in Table 7.
NR 110.24(4)(g)3.
3. When the soil or soil-bentonite liner is to be constructed over the existing soil at the lagoon site, 15% of the soil particles of the existing soil must pass a no. 200 sieve. If this requirement cannot be met, a soil filter fabric material shall be placed between the liner and the existing soil.
NR 110.24(4)(g)5.
5. A means shall be provided to prevent the liner from desiccating after the completion of construction and prior to placing the system in operation.
NR 110.24(4)(g)6.
6. Liners shall be protected by an inorganic soil layer. The soil layer shall have a minimum thickness of 10 centimeters (4 inches). The cover shall be uniformly graded and free from large rocks, soil clumps, and sticks.
NR 110.24(4)(h)1.1. Soil liners shall consist of soils of which more than 50% of the soil particles pass a no. 200 sieve. The soil liner shall have a plasticity index of at least 15.
NR 110.24(4)(h)2.
2. Soil liners shall be compacted to at least 95% of the maximum standard proctor density.
NR 110.24(4)(h)3.
3. Soil liners shall be constructed and compacted in lifts. Each lift may not exceed a compacted thickness of 15 centimeters (6 inches).
NR 110.24(4)(h)4.
4. Frost susceptible soils may not be used to construct the liner. Any soil which is primarily silt, silty sand, or lean clay which has a plasticity index less than 12 shall be considered as frost susceptible.
NR 110.24(4)(h)5.
5. Soil liners constructed of natural in-place soils shall be scarified prior to compaction.
NR 110.24(4)(i)1.1. Bentonite shall be mixed with a soil in which at least 30% of the soil particles pass a no. 200 sieve. The soil shall have a plasticity index of at least 15.
NR 110.24(4)(i)2.
2. Bentonite shall be applied at a rate recommended by the manufacturer or independent soil expert. The constructed liner shall have a minimum bentonite content of 5% by dry weight.
NR 110.24(4)(i)3.
3. Ninety percent of the bentonite by weight shall pass a no. 80 sieve.
NR 110.24(4)(i)5.
5. The bentonite liner shall be compacted to at least 85% of the maximum standard proctor density.
NR 110.24(4)(j)1.1. All liners shall be tested before placing the lagoons into operation to insure compliance with par.
(b). Test results shall be submitted to the department.
NR 110.24(4)(j)2.
2. The method of testing shall be presented to the department with the project plans and specifications.
NR 110.24(4)(j)3.
3. Testing shall be performed in accordance with one of the testing methods of par.
(k).
NR 110.24(4)(j)4.
4. All tests shall be performed under the supervision of the design engineer.