NR 440.20(2)(q)
(q) “Potential combustion concentration" means the theoretical emissions (ng/J, lb/million Btu heat input) that would result from combustion of a fuel in an uncleaned state without emission control systems) and:
NR 440.20(2)(r)
(r) “Potential electrical output capacity" means 33% of the maximum design heat input capacity of the system generating unit (e.g., a steam generating unit with a 100-MW (340 million Btu/hr) fossil-fuel heat input capacity would have a 33-MW potential electrical output capacity). For electric utility combined cycle gas turbines the potential electrical output capacity is determined on the basis of the fossil-fuel firing capacity of the steam generator exclusive of the heat input and electrical power contribution by the gas turbine.
NR 440.20(2)(s)
(s) “Principal company" means the electric utility company which owns the affected facility.
NR 440.20(2)(t)
(t) “Resource recovery unit" means a facility that combusts more than 75% nonfossil fuel on a quarterly (calendar) heat input basis.
NR 440.20(2)(u)
(u) “Solid-derived fuel" means any solid, liquid or gaseous fuel derived from solid fuel for the purpose of creating useful heat and includes, but is not limited to, solvent refined coal, liquified coal and gasified coal.
NR 440.20(2)(v)
(v) “Spare flue gas desulfurization system module" means a separate system of sulfur dioxide emission control equipment capable of treating an amount of flue gas equal to the total amount of flue gas generated by an affected facility when operated at maximum capacity divided by the total number of nonspare flue gas desulfurization modules in the system.
NR 440.20(2)(w)
(w) “Spinning reserve" means the sum of the unutilized net generating capability of all units of the electric utility company that are synchronized to the power distribution system and that are capable of immediately accepting additional load. The electric generating capability of equipment under multiple ownership shall be prorated based on ownership unless the proportional entitlement to electric output is otherwise established by contractual arrangement.
NR 440.20(2)(x)
(x) “Steam generating unit" means any furnace, boiler, or other device used for combusting fuel for the purpose of producing steam including fossil-fuel-fired steam generators associated with combined cycle gas turbines but nuclear steam generators are not included.
NR 440.20(2)(y)
(y) “Subbituminous coal" means coal that is classified as subbituminous A, B or C according to the ASTM Standard Specification for Classification of Coals by Rank, D388-99 (reapproved 2004), incorporated by reference in
s. NR 440.17 (2) (a) 12.
NR 440.20(2)(z)
(z) “System emergency reserves" means an amount of electric generating capacity equivalent to the rated capacity of the single largest electric generating unit in the electric utility company (including steam generating units, internal combustion engines, gas turbines, nuclear units, hydroelectric units and all other electric generating equipment) which is interconnected with the affected facility that has the malfunctioning flue gas desulfurization system. The electric generating capability of equipment under multiple ownership shall be prorated based on ownership unless the proportional entitlement to electric output is otherwise established by contractual arrangement.
NR 440.20(2)(zm)
(zm) “System load" means the entire electric demand of an electric utility company's service area interconnected with the affected facility that has the malfunctioning flue gas desulfurization system plus firm contractual sales to other electric utility companies. Sales to other electric utility companies (e.g., emergency power) not on a firm contractual basis may also be included in the system load when no available system capacity exists in the electric utility company to which the power is supplied for sale.
NR 440.20(3)(a)(a) On and after the date on which the performance test required to be conducted under
s. NR 440.08 is completed, no owner or operator subject to the provisions of this section may cause to be discharged into the atmosphere from any affected facility any gases which contain particulate matter in excess of:
NR 440.20(3)(a)1.
1. 13 ng/J (0.03 lb/million Btu) heat input derived from the combustion of solid, liquid or gaseous fuel;
NR 440.20(3)(a)2.
2. One percent of the potential combustion concentration (99% reduction) when combusting solid fuel; and
NR 440.20(3)(a)3.
3. 30% of potential combustion concentration (70% reduction) when combusting liquid fuel.
NR 440.20(3)(b)
(b) On and after the date the particulate matter performance test required to be conducted under
s. NR 440.08 is completed, no owner or operator subject to the provisions of this section may cause to be discharged into the atmosphere from any affected facility any gases which exhibit greater than 20% opacity (6-minute average), except for one 6-minute period per hour of not more than 27% opacity.
NR 440.20(4)(a)(a) On and after the date on which the initial performance test required to be conducted under
s. NR 440.08 is completed, no owner or operator subject to the provisions of this section may cause to be discharged into the atmosphere from any affected facility which combusts solid fuel or solid-derived fuel, except as provided under
par. (c),
(d),
(f) or
(h), any gases which contain sulfur dioxide in excess of:
NR 440.20(4)(a)1.
1. 520 ng/J (1.20 lb/million Btu) heat input and 10% of the potential combustion concentration (90% reduction), or
NR 440.20(4)(a)2.
2. 30% of the potential combustion concentration (70% reduction), when emissions are less than 260 ng/J (0.60 lb/million Btu) heat input.
NR 440.20(4)(b)
(b) On and after the date on which the initial performance test required to be conducted under
s. NR 440.08 is completed, no owner or operator subject to the provisions of this section may cause to be discharged into the atmosphere from any affected facility which combusts liquid or gaseous fuels (except for liquid or gaseous fuels derived from solid fuels and as provided under
par. (h)), any gases which contain sulfur dioxide in excess of:
NR 440.20(4)(b)1.
1. 340 ng/J (0.80 lb/million Btu) heat input and 10% of the potential combustion concentration (90% reduction), or
NR 440.20(4)(b)2.
2. 100% of the potential combustion concentration (zero percent reduction) when emissions are less than 86 ng/J (0.20 lb/million Btu) heat input.
NR 440.20(4)(c)
(c) On and after the date on which the initial performance test required to be conducted under
s. NR 440.08 is complete, no owner or operator subject to the provisions of this section may cause to be discharged into the atmosphere from any affected facility which combusts solid solvent refined coal (SRC-I) any gases which contain sulfur dioxide in excess of 520 ng/J (1.20 lb/million Btu) heat input and 15% of the potential combustion concentration (85% reduction) except as provided under
par. (f); compliance with the emission limitation is determined on a 30-day rolling average basis and compliance with the percent reduction requirement is determined on a 24-hour basis.
NR 440.20(4)(d)
(d) Sulfur dioxide emissions shall be limited to no more than 520 ng/J (1.20 lb/million Btu) heat input from any affected facility which:
NR 440.20(4)(f)
(f) The emission reduction requirements under this subsection do not apply to any affected facility that is operated under an SO
2 commercial demonstration permit issued by the administrator in accordance with the provisions of
40 CFR 60.47Da.
NR 440.20(4)(g)
(g) Compliance with the emission limitation and percent reduction requirements under this subsection are both determined on a 30-day rolling average basis except as provided under
par. (c).
NR 440.20(4)(h)
(h) When different fuels are combusted simultaneously, the applicable standard is determined by proration using the following formula:
NR 440.20(4)(h)1.
1. If emissions of sulfur dioxide to the atmosphere are greater than 260 ng/J (0.60 lb/million Btu) heat input:
Es = [340 x + 520 y]/100
and
%Ps = 10
NR 440.20(4)(h)2.
2. If emissions of sulfur dioxide to the atmosphere are equal to or less than 260 ng/J (0.60 lb/million Btu) heat input:
Es = [340 x + 520 y]/100
and
%Ps = [10 x + 30 y]/100
where:
Es is the prorated sulfur dioxide emission limit (ng/J heat input)
%Ps is the percentage of potential sulfur dioxide emission allowed
x is the percentage of total heat input derived from the combustion of liquid or gaseous fuels, excluding solid-derived fuels
y is the percentage of total heat input derived from the combustion of solid fuel, including solid-derived fuels
NR 440.20(5)(a)(a) On and after the date on which the initial performance test required to be conducted under
s. NR 440.08 is completed, no owner or operator subject to the provisions of this section may cause to be discharged into the atmosphere from any affected facility, except as provided under
pars. (b) and
(d), any gases which contain nitrogen oxides, expressed as NO
2, in excess of the following emission limits, based on a 30-day rolling average, except as provided under
sub. (6) (j) 1.:
1Exempt from NOx standards and NOx monitoring requirements.
2Any fuel containing less than 25%, by weight, lignite is not prorated but its percentage is added to the percentage of the predominant fuel.
NR 440.20(5)(b)
(b) The emission limitations under
par. (a) do not apply to any affected facility which is combusting coal-derived liquid fuel and is operating under a commercial demonstration permit issued by the administrator in accordance with the provisions of
40 CFR 60.47Da.
NR 440.20(5)(c)
(c) Except as provided under
par. (d),when 2 or more fuels are combusted simultaneously, the applicable standard is determined by proration using the following formula:
En = [86 w + 130 x + 210 y + 260 z + 340 v] /100
where:
En is the applicable standard for nitrogen oxides when multiple fuels are combusted simultaneously (ng/J heat input)
w is the percentage of total heat input derived from the combustion of fuels subject to the 86 ng/J heat input standard
x is the percentage of total heat input derived from the combustion of fuels subject to the 130 ng/J heat input standard
y is the percentage of total heat input derived from the combustion of fuels subject to the 210 ng/J heat input standard
z is the percentage of total heat input derived from the combustion of fuels subject to the 260 ng/J heat input standard
v is the percentage of total heat input delivered from the combustion of fuels subject to the 340 ng/J heat input standard
NR 440.20(5)(d)1.1. On and after the date on which the initial performance test required to be conducted under
s. NR 440.08 is completed, no new source owner or operator subject to the provisions of this section may cause to be discharged into the atmosphere from any affected facility for which construction commenced after July 9, 1997 any gases which contain nitrogen oxides, expressed as NO
2, in excess of 200 nanograms per joule (1.6 pounds per megawatt-hour) gross energy output, based on a 30-day rolling average, except as provided under
sub. (6) (k) 1.
NR 440.20(5)(d)2.
2. On and after the date on which the initial performance test required to be conducted under
s. NR 440.08 is completed, no existing source owner or operator subject to the provisions of this section may cause to be discharged into the atmosphere from any affected facility for which construction commenced after July 9, 1997 any gases which contain nitrogen oxides, expressed as NO
2, in excess of 65 nanograms per joule (0.15 pounds per million Btu) heat input, based on a 30-day rolling average.
NR 440.20(6)(a)(a)
Percent reduction requirement for particulate matter. Compliance with the particulate matter emission limitation under
sub. (3) (a) 1. constitutes compliance with the percent reduction requirements for particulate matter under
sub. (3) (a) 2. and
3.
NR 440.20(6)(b)
(b)
Percent reduction requirement for NOx. Compliance with the nitrogen oxides emission limitation under
sub. (5) (a) 1. constitutes compliance with the percent reduction requirements under
sub. (5) (a) 2.
NR 440.20(6)(c)
(c)
Compliance exception. The particulate matter emissions standards under
sub. (3) and the nitrogen oxides emission standards under
sub. (5) apply at all times except during periods of startup, shutdown or malfunction. The sulfur dioxide emission standards under
sub. (4) apply at all times except during periods of startup, shutdown or when both emergency conditions exist and the procedures under
par. (d) are implemented.
NR 440.20(6)(d)
(d)
Operation with malfunctioning flue gas desulfurization. During emergency conditions in the principal company, an affected facility with a malfunctioning flue gas desulfurization system may be operated if sulfur dioxide emissions are minimized by:
NR 440.20(6)(d)1.
1. Operating all operable flue gas desulfurization system modules, and bringing back into operation any malfunctioned module as soon as repairs are completed.
NR 440.20(6)(d)2.
2. Bypassing flue gases around only those flue gas desulfurization system modules that have been taken out of operation because they were incapable of any sulfur dioxide emission reduction or which would have suffered significant physical damage if they had remained in operation, and
NR 440.20(6)(d)3.
3. Designing, constructing and operating a spare flue gas desulfurization system module for an affected facility larger than 365 MW (1,250 million Btu/hr) heat input (approximately 125 MW electrical output capacity). The department may at its discretion require the owner or operator within 60 days of notification to demonstrate spare module capability. To demonstrate this capability, the owner or operator shall demonstrate compliance with the appropriate requirements under
sub. (4) (a),
(b),
(d) and
(h) for any period of operation lasting from 24 hours to 30 days when:
NR 440.20(6)(d)3.c.
c. The fuel fired during the 24-hour to 30-day period is representative of the type and average sulfur content of fuel used over a typical 30-day period, and
NR 440.20(6)(d)3.d.
d. The owner or operator has given the department at least 30 days notice of the date and period of time over which the demonstration will be performed.
NR 440.20(6)(e)
(e)
Compliance after the initial performance test. After the initial performance test required under
s. NR 440.08, compliance with the sulfur dioxide emission limitations and percentage reduction requirements under
sub. (4) and the nitrogen oxides emission limitations under
sub. (5) shall be based on the average emission rate for 30 successive boiler operating days. A separate performance test is completed at the end of each boiler operating day after the initial performance test, and a new 30-day average emission rate for both sulfur dioxide and nitrogen oxides and a new percent reduction of sulfur dioxide are calculated to show compliance with the standards.
NR 440.20(6)(f)
(f)
Initial performance test. For the initial performance test required under
s. NR 440.08, compliance with the sulfur dioxide emission limitations and percent reduction requirements under
sub. (4) and the nitrogen oxides emission limitation under
sub. (5) shall be based on the average emission rates for sulfur dioxide, nitrogen oxides, and percent reduction for sulfur dioxide for the first 30 successive boiler operating days. The initial performance test is the only test in which at least 30 days prior notice is required unless otherwise specified by the department. The initial performance test shall be scheduled so that the first boiler operating day of the 30 successive boiler operating days is completed within 60 days after achieving the maximum production rate at which the affected facility will be operated, but not later than 180 days after initial startup of the facility.
NR 440.20(6)(g)
(g)
Compliance calculations for SO2 and NOx
. Compliance shall be determined by calculating the arithmetic average of all hourly emission rates for SO
2 and NO
x for the 30 successive boiler operating days, except for data obtained during startup, shutdown, malfunction (NO
x only) or emergency conditions (SO
2 only). Compliance with the percentage reduction requirement for SO
2 shall be determined based on the average inlet and average outlet SO
2 emission rates for the 30 successive boiler operating days.
NR 440.20(6)(h)
(h)
Quantity of emission data below minimum. If an owner or operator has not obtained the minimum quantity of emission data as required under
sub. (7), compliance of the affected facility with the emission requirements under
subs. (4) and
(5) for the day on which the 30-day period ends may be determined by the department by following the applicable procedures in section 7.0 of Method 19,
40 CFR part 60, Appendix A, incorporated by reference in
s. NR 440.17.
NR 440.20(6)(i)
(i)
Compliance provisions for sources subject to sub. (5) (d) 1. The owner or operator of an affected facility subject to
sub. (5) (d) 1. (new source constructed after July 7, 1997) shall calculate NO
x emissions by multiplying the average hourly NO
x output concentration measured according to the provisions of
sub. (7) (c) by the average hourly flow rate measured according to the provisions of
sub. (7) (L) and divided by the average hourly gross energy output measured according to the provisions of
sub. (7) (k).
NR 440.20(6)(j)
(j)
Compliance provisions for duct burners subject to sub. (5) (a) 1. To determine compliance with the emissions limits for NO
x required by
sub. (5) (a) for duct burners used in combined cycle systems, the owner or operator of an affected duct burner shall use one of the following procedures: