(2) Record Retention. A licensee shall maintain the records that are required under this subchapter for the period specified by the applicable provision. If a retention period is not otherwise specified, records shall be retained until the department terminates the facility’s license. All records related to this subchapter may be destroyed upon the department’s termination of the facility license.
SECTION 97. DHS 157 Appendix A is repealed and recreated to read:
Chapter DHS 157
APPENDIX A
(See PDF for image)
Exempt Concentrations
Element (atomic number)
Radionuclide
Column I
Gas concentration
µCi/ml 1/
Column II Liquid
and solid concentration
µCi/ml 2/
Antimony (51)
Sb−122
3X10−4
Sb−124
2X10−4
Sb−125
1X10−3
Argon (18)
Ar−37
1X10−3
Ar−41
4X10−7
Arsenic (33)
As−73
5X10−3
As−74
5X10−4
As−76
2X10−4
As−77
8X10−4
Barium (56)
Ba−131
2X10−3
Ba−140
3X10−4
Beryllium (4)
Be−7
2X10−2
Bismuth (83)
Bi−206
4X10−4
Bromine (35)
Br−82
4X10−7
3X10−3
Cadmium (48)
Cd−109
2X10−3
Cd−115m
3X10−4
Cd−115
3X10−4
Calcium (20)
Ca−45
9X10−5
Ca−47
5X10−4
Carbon (6)
C−14
1X10−6
8X10−3
Cerium (58)
Ce−141
9X10−4
Ce−143
4X10−4
Ce−144
1X10−4
Cesium (55)
Cs−131
2X10−2
Cs−134m
6X10−2
Cs−134
9X10−5
Chlorine (17)
Cl−38
9X10−7
4X10−3
Chromium (24)
Cr−51
2X10−2
Cobalt (27)
Co−57
5X10−3
Co−58
1X10−3
Co−60
5X10−4
Copper (29)
Cu−64
3X10−3
Dysprosium (66)
Dy−165
4X10−3
Dy−166
4X10−4
Erbium (68)
Er−169
9X10−4
Er−171
1X10−3
Europium (63)
Eu−152(9.2 h)
6X10−4
Eu−155
2X10−3
Fluorine (9)
F−18
2X10−6
8X10−3
1/ Values are given in Column I only for those materials normally used as gases.
2/ µCi/g for solids
Element (atomic number)
Radionuclide
Column I
Gas concentration
µCi/ml 1/
Column II Liquid
and solid concentration
µCi/ml 2/
Gadolinium (64)
Gd−153
2X10−3
Gd−159
8X10−4
Gallium (31)
Ga−72
4X10−4
Germanium (32)
Ge−71
2X10−2
Gold (79)
Au−196
2X10−3
Au−198
5X10−4
Au−199
2X10−3
Hafnium (72)
Hf−181
7X10−4
Hydrogen (1)
H−3
5X10−6
3X10−2
Indium (49)
In−113m
1X10−2
In−114m
2X10−4
Iodine (53)
I−126
3X10−9
2X10−5
I−131
3X10−9
2X10−5
I−132
8X10−8
6X10−4
I−133
1X10−8
7X10−5
I−134
2X10−7
1X10−3
Iridium (77)
Ir−190
2X10−3
Ir−192
4X10−4
Ir−194
3X10−4
Iron (26)
Fe−55
8X10−3
Fe−59
6X10−4
Krypton (36)
Kr−85m
1X10−6
Kr−85
3X10−6
Lanthanum (57)
La−140
2X10−4
Lead (82)
Pb−203
4X103
Lutetium (71)
Lu−177
1X10−3
Manganese (25)
Mn−52
3X10−4
Mn−54
1X10−3
Mn−56
1X10−3
Mercury (80)
Hg−197m
2X10−3
Hg−197
3X10−3
Hg−203
2X10−4
Molybdenum (42)
Mo−99
2X10−3
Neodymium (60)
Nd−147
6X10−4
Nd−149
3X10−3
Nickel (28)
Ni−65
1X10−3
Niobium (Columbium) (41)
Nb−95
1X10−3
Nb−97
9X10−3
Osmium (76)
Os−185
7X10−4
Os−191m
3X10−2
Os−191
2X10−3
Os−193
6X10−4
Palladium (46)
Pd−103
3X10−3
Pd−109
9X10−4
Phosphorus (15)
P−32
2X10−4
Platinum (78)
Pt−191
1X10−3
Pt−193m
1X10−2
1/ Values are given in Column I only for those materials normally used as gases.
2/ µCi/g for solids
Element (atomic number)
Radionuclide
Column I
Gas concentration
µCi/ml 1/
Column II Liquid
and solid concentration
µCi/ml 2/
Pt−197m
1X10−2
Pt−197
1X10−3
Potassium (19)
K−42
3X10−3
Praseodymium (59)
Pr−142
3X10−4
Pr−143
5X10−4
Promethium (61)
Pm−147
2X10−3
Pm−149
4X10−4
Rhenium (75)
Re−183
6X10−3
Re−186
9X10−4
Re−188
6X10−4
Rhodium (45)
Rh−103m
1X10−1
Rh−105
1X10−3
Rubidium (37)
Rb−86
7X10−4
Ruthenium (44)
Ru−97
4X10−3
Ru−103
8X10−4
Ru−105
1X10−3
Ru−106
1X10−4
Samarium (62)
Sm−153
8X10−4
Scandium (21)
Sc−46
4X10−4
Sc−47
9X10−4
Sc−48
3X10−4
Selenium (34)
Se−75
3X10−3
Silicon (14)
Si−31
9X10−3
Silver (47)
Ag−105
1X10−3
Ag−110m
3X10−4
Ag−111
4X10−4
Sodium (11)
Na−24
2X10−3
Strontium (38)
Sr−85
1X10−3
Sr−89
1X10−4
Sr−91
7X10−4
Sr−92
7X10−4
Sulfur (16)
S−35
9X10−8
6X10−4
Tantalum (73)
Ta−182
4X10−4
Technetium (43)
Tc−96m
1X10−1
Tc−96
1X10−3
Tellurium (52)
Te−125m
2X10−3
Te−127m
6X10−4
Te−127
3X10−3
Te−129m
3X10−4
Te−131m
6X10−4
Te−132
3X10−4
Terbium (65)
Tb−160
4X10−4
Thallium (81)
Tl−200
4X10−3
Tl−201
3X10−3
Tl−202
1X10−3
Tl−204
1X10−3
Thulium (69)
Tm−170
5X10−4
1/ Values are given in Column I only for those materials normally used as gases.
2/ µCi/g for solids
Element (atomic number)
Radionuclide
Column I
Gas concentration
µCi/ml 1/
Column II Liquid
and solid concentration
µCi/ml 2/
Tm−171
5X103
Tin (50)
Sn−113
9X104
Sn−125
2X104
Tungsten (Wolfram) (74)
W−181
4X103
W-187
7X104
Vanadium (23)
V-48
3X104
Xenon (54)
Xe−131m
4X106
Xe−133
3X106
Xe−135
1X106
Ytterbium (70)
Yb−175
1X103
Yttrium (39)
Y−90
2X104
Y−91m
3X102
Y−91
3X104
Y−92
6X104
Y−93
3X104
Zinc (30)
Zn−65
1X103
Zn−69m
7X104
Zn−69
2X102
Zirconium (40)
Zr−95
6X104
Zr−97
2X104
Beta and gamma−emitting
radioactive material not listed
above with half−life
of less than 3 years.
1X1010
1X106
Note 1: Many radionuclides transform into other radionuclides. In expressing the concentrations in Appendix A, the activity stated is that of the parent radionuclide and takes into account the radioactive decay products.
Note 2: For purposes of s. DHS 157.09 (2) where there is involved a combination of radionuclides, the limit for the combination should be derived as follows: Determine for each radionuclide in the product the ratio between the radioactivity concentration present in the product and the exempt radioactivity concentration established in Appendix A for the specific radionuclide when not in combination. The sum of such ratios may not exceed “1”.
Example:   Concentration of Radionuclide A in Product +
    Exempt concentration of Radionuclide A
    Concentration of Radionuclide B in Product <1
    Exempt concentration of Radionuclide B
Note 3: To convert µCi/ml to SI units of megabecquerels per liter multiply the above values by 37.
Example: Zirconium (40) Zr−97 (2x10−4 µCi/ml multiplied by 37 is equivalent to 74 x 10−4 MBq/l).
1/ Values are given in Column I only for those materials normally used as gases.
2/ µCi/g for solids.
SECTION 98. DHS 157 Appendix B is repealed and recreated to read:
(See PDF for image)(See PDF for image)Chapter DHS 157
APPENDIX B
Exempt Quantities
Radioactive Material
Microcuries
Radioactive Material
Microcuries
Antimony−122 (Sb 122)
100
Gallium−67 (Ga 67)
100
Antimony−124 (Sb 124)
10
Gallium−72 (Ga 72)
10
Antimony−125 (Sb 125)
10
Germanium−68 (Ge 68)
10
Arsenic−73 (As 73)
100
Germanium−71 (Ge 71)
100
Arsenic−74 (As 74)
10
Gold−195 (Au 195)
10
Arsenic−76 (As 76)
10
Gold−198 (Au 198)
100
Arsenic−77 (As 77)
100
Gold−199 (Au 199)
100
Barium−131 (Ba 131)
10
Hafnium−181 (Hf 181)
10
Barium−133 (Ba 133)
10
Holmium−166 (Ho 166)
100
Barium−140 (Ba 140)
10
Hydrogen−3 (H 3)
1,000
Bismuth−210 (Bi 210)
1
Indium−111 (In 111)
100
Bromine−82 (Br 82)
10
Indium−113m (In 113m)
100
Cadmium−109 (Cd 109)
10
Indium−114m (In 114m)
10
Cadmium−115m (Cd 115m)
10
Indium−115m (In 115m)
100
Cadmium−115 (Cd 115)
100
Indium−115 (In 115)
10
Calcium−45 (Ca 45)
10
Iodine−123 (I 123)
100
Calcium−47 (Ca 47)
10
Iodine−125 (I 125)
1
Carbon−14 (C 14)
100
Iodine−126 (I 126)
1
Cerium−141 (Ce 141)
100
Iodine−129 (I 129)
0.1
Cerium−143 (Ce 143)
100
Iodine−131 (I 131)
1
Cerium−144 (Ce 144)
1
Iodine−132 (I 132)
10
Cesium−129 (Cs 129)
100
Iodine−133 (I 133)
1
Cesium−131 (Cs 131)
1,000
Iodine−134 (I 134)
10
Cesium−134m (Cs 134m)
100
Iodine−135 (I 135)
10
Cesium−134 (Cs 134)
1
Iridium−192 (Ir 192)
10
Cesium−135 (Cs 135)
10
Iridium−194 (Ir 194)
100
Cesium−136 (Cs 136)
10
Iron−52 (Fe 52)
10
Cesium−137 (Cs 137)
10
Iron−55 (Fe 55)
100
Chlorine−36 (Cl 36)
10
Iron−59 (Fe 59)
10
Chlorine−38 (Cl 38)
10
Krypton−85 (Kr 85)
100
Chromium−51 (Cr 51)
1,000
Krypton−87 (Kr 87)
10
Cobalt−57 (Co 57)
100
Lanthanum−140 (La 140)
10
Cobalt−58m (Co 58m)
10
Lutetium−177 (Lu 177)
100
Cobalt−58 (Co 58)
10
Manganese−52 (Mn 52)
10
Cobalt−60 (Co 60)
1
Manganese−54 (Mn 54)
10
Copper−64 (Cu 64)
100
Manganese−56 (Mn 56)
10
Dysprosium−165 (Dy 165)
10
Mercury−197m (Hg 197m)
100
Dysprosium−166 (Dy 166)
100
Mercury−197 (Hg 197)
100
Erbium−169 (Er 169)
100
Mercury−203 (Hg 203)
10
Erbium−171 (Er 171)
100
Molybdenum−99 (Mo 99)
100
Europium−152 (Eu 152)9.2h
100
Neodymium−147 (Nd 147)
100
Europium−152 (Eu 152)13 yr
1
Neodymium−149 (Nd 149)
100
Europium−154 (Eu 154)
1
Nickel−59 (Ni 59)
100
Europium−155 (Eu 155)
10
Nickel−63 (Ni 63)
10
Fluorine−18 (F 18)
1,000
Nickel−65 (Ni 65)
100
Gadolinium−153 (Gd 153)
10
Niobium−93m (Nb 93m)
10
Gadolinium−159 (Gd 159)
100
Niobium−95 (Nb 95)
10
Niobium−97 (Nb 97)
10
Radioactive Material
Microcuries
Radioactive Material
Microcuries
Osmium−185 (Os 185)
10
Technetium−96 (Tc 96)
10
Osmium−191m (Os 191m)
100
Technetium−97m (Tc 97m)
100
Osmium−191 (Os 191)
100
Technetium−97 (Tc 97)
100
Osmium−193 (Os 193)
100
Technetium−99m (Tc 99m)
100
Palladium−103 (Pd 103)
100
Technetium−99 (Tc 99)
10
Palladium−109 (Pd 109)
100
Tellurium−125m (Te 125m)
10
Phosphorus−32 (P 32)
10
Tellurium−127m (Te 127m)
10
Platinum−191 (Pt 191)
100
Tellurium−127 (Te 127)
100
Platinum−193m (Pt 193m)
100
Tellurium−129m (Te 129m)
10
Platinum−193 (Pt 193)
100
Tellurium−129 (Te 129)
100
Platinum−197m (Pt 197m)
100
Tellurium−131m (Te 131m)
10
Platinum−197 (Pt 197)
100
Tellurium−132 (Te 132)
10
Polonium−210 (Po 210)
0.1
Terbium−160 (Tb 160)
10
Potassium−42 (K 42)
10
Thallium−200 (Tl 200)
100
Potassium−43 (K 43)
10
Thallium−201 (Tl 201)
100
Praseodymium−142 (Pr 142)
100
Thallium−202 (Tl 202)
100
Praseodymium−143 (Pr 143)
100
Thallium−204 (Tl 204)
10
Promethium−147 (Pm 147)
10
Thulium−170 (Tm 170)
10
Promethium−149 (Pm 149)
10
Thulium−171 (Tm 171)
10
Rhenium−186 (Re 186)
100
Tin−113 (Sn 113)
10
Rhenium−188 (Re 188)
100
Tin−125 (Sn 125)
10
Rhodium−103m (Rh 103m)
100
Tungsten−181 (W 181)
10
Rhodium−105 (Rh 105)
100
Tungsten−185 (W 185)
10
Rubidium−81 (Rb 81)
10
Tungsten−187 (W 187)
100
Rubidium−86 (Rb 86)
10
Vanadium−48 (V 48)
10
Rubidium−87 (Rb 87)
10
Xenon−131m (Xe 131m)
1,000
Ruthenium−97 (Ru 97)
100
Xenon−133 (Xe 133)
100
Ruthenium−103 (Ru 103)
10
Xenon−135 (Xe 135)
100
Ruthenium−105 (Ru 105)
10
Ytterbium−175 (Yb 175)
100
Ruthenium−106 (Ru 106)
1
Yttrium−87 (Y 87)
10
Samarium−151 (Sm 151)
10
Yttrium−88 (Y 88)
10
Samarium−153 (Sm 153)
100
Yttrium−90 (Y 90)
10
Scandium−46 (Sc 46)
10
Yttrium−91 (Y 91)
10
Scandium−47 (Sc 47)
100
Yttrium−92 (Y 92)
100
Scandium−48 (Sc 48)
10
Yttrium−93 (Y 93)
100
Selenium−75 (Se 75)
10
Zinc−65 (Zn 65)
10
Silicon−31 (Si 31)
100
Zinc−69m (Zn 69m)
100
Silver−105 (Ag 105)
10
Zinc−69 (Zn 69)
1,000
Silver−110m (Ag 110m)
1
Zirconium−93 (Zr 93)
10
Silver−111 (Ag 111)
100
Zirconium−95 (Zr 95)
10
Sodium−22 (Na 22)
10
Zirconium−97 (Zr 97)
10
Sodium−24 (Na 24)
10
Any radioactive material not listed above other than alpha-emitting radioactive material
0.1
Strontium−85 (Sr 85)
10
Strontium−89 (Sr 89)
1
Strontium−90 (Sr 90)
0.1
Any alpha−emitting radioactive material not listed above other than transuranic radioactive material
0.01
Strontium−91 (Sr 91)
10
Strontium−92 (Sr 92)
10
Sulphur−35 (S 35)
100
Tantalum−182 (Ta 182)
10
Note 1:
To convert microcuries (µCi) to SI units of kilobecquerels (kBq), multiply the above values by 37.
Example: Zirconium−97 (10 µCi multiplied by 37 is equivalent to 370 kBq).  
SECTION 99. DHS 157 Appendix E is repealed and recreated to read:
Chapter DHS 157
APPENDIX E
Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of
Radionuclides for Occupational Exposure; Effluent Concentrations;
Concentrations for Release to Sanitary Sewerage
Introduction
For each radionuclide, Table I indicates the chemical form which is to be used for selecting the appropriate ALI or DAC value. The ALIs and DACs for inhalation are given for an aerosol with an activity median aerodynamic diameter (AMAD) of 1 (micron), and for the D, W and Y classes of radioactive material, which refer to their retention in the pulmonary region of the lung. This classification applies to a range of clearance half−times for D if less than 10 days, for W from 10 to 100 days, and for Y greater than 100 days. The D, W or Y class given in the column headed “Class” applies only to the inhalation ALIs and DACs given in Table I, column 2 and 3. Table II provides concentration limits for airborne and liquid effluents released to the general environment. Table III provides concentration limits for discharges to sanitary
sewerage.
Note: The values in Tables I, II, and III are presented in the computer “E” notation. In this notation a value of 6E−02 represents a value of 6 x 10−2 or 0.06, 6E+2 represents 6 x 1O2 or 600, and 6E+0 represents 6 x 100 or 6.
Table I “Occupational Values”
Note that the columns in Table I of this appendix captioned “Oral Ingestion ALI,” “Inhalation ALI” and “DAC” are applicable to occupational exposure to radioactive material. The ALIs in this appendix are the annual intakes of given radionuclide by “reference man” which would result in either (1) a committed effective dose equivalent of 0.05 Sv (5 rem), stochastic ALI, or (2) a committed dose equivalent of 0.5 Sv (50 rem) to an organ or tissue, non−stochastic ALI. The stochastic ALIs were derived to result in a risk, due to irradiation of organs and tissues, comparable to the risk associated with deep dose equivalent to the whole body of 0.05 Sv (5 rem). The derivation includes multiplying the committed dose equivalent to an organ or tissue by a weighting factor, wT. This weighting factor is the proportion of the risk of stochastic effects resulting from irradiation of the organ or tissue, T, to the total risk of stochastic effects when the whole body is irradiated uniformly. The values of wT are listed under the definition of weighting factor in s. DHS 157.03. The non−stochastic ALIs were derived to avoid non−stochastic effects, such as prompt damage to tissue or reduction in organ function.
Note: A description of the reference man is contained in the International Commission on Radiological Protection report, ICRP Publication 23, Reference Man: Anatomical Physiological and Metabolic Characteristics, Pergamon Press, Oxford (1975). The publication may be ordered from the web−site http://www.icrp.org/publications.asp.
A value of wT = 0.06 is applicable to each of the 5 organs or tissues in the “remainder” category receiving the highest dose equivalents, and the dose equivalents of all other remaining tissues may be disregarded. The following portions of the GI tract -stomach, small intestine, upper large intestine, and lower large intestine - are to be treated as 4 separate organs. Note that the dose equivalents for an extremity, skin and lens of the eye are not considered in computing the committed effective dose equivalent, but are subject to limits that must be met separately.
When an ALI is defined by the stochastic dose limit, this value alone is given. When an ALI is determined by the non−stochastic dose limit to an organ, the organ or tissue to which the limit applies is shown, and the ALI for the stochastic limit is shown in parentheses.
Abbreviated organ or tissue designations are used:
LLI wall = lower large intestine wall;
St wall = stomach wall;
Blad wall = bladder wall; and
Bone surf = bone surface.
The use of the ALIs listed first, the more limiting of the stochastic and non−stochastic ALIs, will ensure that non−stochastic effects are avoided and that the risk of stochastic effects is limited to an acceptably low value. If, in a particular situation involving a radionuclide for which the non−stochastic ALI is limiting, use of that non−stochastic ALI is considered unduly conservative, the licensee may use the stochastic ALI to determine the committed effective dose equivalent. However, the licensee shall also ensure that the 0.5 Sv (50 rem) dose equivalent limit for any organ or tissue is not exceeded by the sum of the external deep dose equivalent plus the internal committed dose equivalent to that organ, not the effective dose. For the case where there is no external dose contribution, this would be demonstrated if the sum of the fractions of the nonstochastic ALIs that contribute to the committed dose equivalent to the organ receiving the highest dose does not exceed unity, that is, intake of each radionuclide/ALIns =< 1.0. If there is an external deep dose equivalent contribution of Hd, then this sum must be less than 1 − (Hd/50), instead of =< 1.0.
Loading...
Loading...
Links to Admin. Code and Statutes in this Register are to current versions, which may not be the version that was referred to in the original published document.